Answers
Search for questions & chapters
Class 11
>>Applied Mathematics
>>Sequences and series
>>Geometric progression
>>For 0 < ϕ < pi/2 if x = ∑n ...
Question
Bookmark
For 0<ϕ<π/2 if x=∑
n=0
∞
cos
2n
ϕ,y=∑
n=0
∞
sin
2n
ϕ,z=∑
n=0
∞
cos
2n
ϕsin
2n
ϕ, then
Hard
Solution
verified
Verified by Toppr
Correct option is
B
xyz=xy+z
Given x=
n=0
∑
∞
cos
2n
ϕ,y=
n=0
∑
∞
sin
2n
ϕ and z=
n=0
∑
∞
cos
2n
ϕsin
2n
ϕ
\since 0<ϕ<
2
π
, so each series is geometric series with common ratio r<1. Therefore, the series are convergent.
Now, x=
1−cos
2
ϕ
1
=
sin
2
ϕ
1
(∵S
∞
=
1−r
a
)
y=
1−sin
2
ϕ
1
(∵S
∞
=
1−r
a
)
=
cos
2
ϕ
1
z=
1−sin
2
ϕcos
2
ϕ
1
(∵S
∞
=
1−r
a
)
Consider, xyz=
sin
2
ϕcos
2
ϕ(1−sin
2
ϕcos
2
ϕ)
1
(1)
Also, =
sin
2
ϕcos
2
ϕ
1
+
1−sin
2
ϕcos
2
ϕ
1
xy+z=
sin
2
ϕcos
2
ϕ(1−sin
2
ϕcos
2
ϕ)
1−sin
2
ϕcos
2
ϕ+sin
2
ϕcos
2
ϕ
=
sin
2
ϕcos
2
ϕ(1−sin
2
ϕcos
2
ϕ)
1
=xyz [From(1)]