Physics, asked by peachybee66, 3 days ago

[tex]\Huge{\color{magenta}{\fbox{\textsf{\textbf{Question:-}}}}}
A ball is thrown vertically up. If the ball reached at maximum height in 3s. Assume air resistance is negligible. The maximum height of the ball is most nearly​

Answers

Answered by Anonymous
176

Given : Time taken to reach maximum height is 3s .

 \\ \\

To Find : Find the maximum height reached

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : For Solving this question we need to apply the first equation of motion . Let's Solve :

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ v = u + gt }}}}}

  •  {\underline{\boxed{\pmb{\sf{ {v}^{2} - {u}^{2} = 2gs }}}}}

Where :

  • v = Final Velocity = 0 m/s
  • u = Initial Velocity = ?
  • g = Gravitational force = 10 m/s
  • t = Time = 3s
  • s = Maximum height = ?

 \\ \\

 \maltese Calculating the Initial Velocity :

 \begin{gathered} \qquad \; \longrightarrow \; \sf { v = u + gt } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 0 = u + \bigg( - 10 \bigg) \times 3 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 0 = u + \bigg( - 30 \bigg) } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 0 = u - 30 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 0 + 30 = u  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; {\underline{\boxed{\pmb{\sf{ Initial \; Velocity = 30 \; m/s  }}}}} \; {\purple{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \maltese Calculating the Maximum height :

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { {v}^{2} - {u}^{2} = 2gs } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { {0}^{2} - {30}^{2} = 2 \times \bigg( - 10 \bigg) \times s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { 0 - 900 = - 20 \times s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { - 900 = - 20 \times s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { \cancel{-} 900 = \cancel{-} 20 \times s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { 900 = 20 \times s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { \dfrac{900}{20} = s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \sf { \cancel\dfrac{900}{20} = s } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; {\underline{\boxed{\pmb{\sf{ Maximum \; Height = 45 \; m }}}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Ball reached the height of 45 m .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by kvalli8519
10

Given,

A ball thrown vertically up. Time taken to reach height is 3s.

Find the maximum height of the ball (s).

Solution :

Let's solve this problem by using Equations of motion,

according to the question,

♦ Final velocity (v) = 0m/s

♦ Initial Velocity (u) = ?

♦ Time (t) = 3s

♦ g = 10m/s

♦ Maximum Height (s) = ?

finding initial velocity (u) :-

by using,

 \ast \:  \boxed{  \color{gold}\textbf{v = u + gt}}

on substituting the values,

 \tt⇢ \: \: 0 = u + (  - 10)3

\tt⇢ \: \: u - 30 = 0

\tt⇢ \: \: u = 30m {s}^{ - 1}

now, finding Maximum height reached by the ball in 3seconds :-

by using,

 \ast \:   \boxed{ \color{gold} \bf  {v}^{2}  -  {u}^{2}  = 2gs}

on substituting the values,

\tt⇢ \: \:  {0}^{2}  -  {30}^{2}  = 2 \times -  10 \times s

\tt⇢ \: \:  - 900 =  - 20s

\tt⇢ \: \: s =   \cancel{\frac{ - 900}{ - 20} }

\tt⇢ \: \: s = 45m

FINAL ANSWER :

The maximum height reached by the ball in 3seconds is 45m .

Similar questions