Math, asked by Anonymous, 17 days ago

\huge\color{pink}\boxed{\colorbox{Black}{★Question★}}
The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower.

Answers

Answered by velpulaaneesh123
8

Answer:

10\sqrt{3} m

Step-by-step explanation:

____________________________

❒ Let the tower be AB

❒ Let point be C

❒ Distance of point C from foot of tower = 30m

Hence,BC = 30m

❒ Angle of elevation = 30^o

So\: \angle ACB =30^o

\bold{Since\:tower\:is\:vertical,}

\angle ABC= 90^o

❒ We need to find height of tower AB

____________________________

\hookrightarrow\boxed{tanC = \frac{side\:opposite\:to\:angle\:C}{side\:adjacent\:to\:angle\:C} }

\hookrightarrow tan\:30^o = \frac{AB}{AC}

\hookrightarrow \frac{1}{\sqrt{3}}  = \frac{AB}{30}

\hookrightarrow \frac{30}{\sqrt{3}} = AB

\hookrightarrow AB = \frac{30}{\sqrt{3} }

\bold{Multiplying\:\sqrt{3}\:in\:numerator\:and\:denominator}

\hookrightarrow AB = \frac{30}{\sqrt{3} } \times \frac{\sqrt{3} }{\sqrt{3} }

\hookrightarrow AB = \frac{30\sqrt{3} }{3}

\hookrightarrow AB = 10\sqrt{3}

\orange{\hookrightarrow}\red{\boxed{AB = 10\sqrt{3}}}

\mathbb{HEIGHT\:OF\:TOWER=}10\sqrt{3}m

Similar questions