Math, asked by simra4825, 2 months ago

 \huge\color{pink}\mathfrak{Answer}


Pove that

 \sf{if \: sin \: = \frac{3}{5} \: then \: show } \\ \sf{that \: 4tan + 3tan = 6cos}
 \color{blue}\fbox \color{black} \sf{Do\:Follow}

Answers

Answered by AbhinavRocks10
2

\large\underline{\bold{Question - }}

\sf \:What \: is \: the \: additive \: inverse \: of  \: \dfrac{5}{13}

\large\underline{\bold{Solution-}}

Basic Concept :- An additive inverse of a number is defined as the value, which on adding with the given number results in zero value. It is the value we add to a number to give resultant zero.

Let, a is any real number, then its additive inverse will be - a so that, a + (-a) = a – a = 0.

\sf \: Hence \: additive \: inverse \: of  \: \dfrac{5}{13} = \bf \: - \: \dfrac{5}{13}

\sf \: Write \: the \: multiplicative \: inverse \: of \: - \: \dfrac{2}{3}

\large\underline{\bold{Solution-}}

  • Basic concept :- The multiplicative inverse of a number x (should be non - zero) is given by 1/x, such that when it is multiplied by given number, it results in value equal to 1. It is also called Reciprocal of a given real number.

  • If p/q is a fraction, then the multiplicative inverse of p/q should be such that, when it is multiplied to the fraction, then the result should be 1. Hence, q/p is the multiplicative inverse of fraction p/q.

\sf \: Hence \:multiplicative \: inverse \: of \: - \: \dfrac{2}{3} = \bf \: - \: \dfrac{3}{2}

\bf \: Find \: the \: value \: of \:

\bf \: (i) \: \sf \: \dfrac{2}{5} + \dfrac{3}{4}

Firstly, We have to find the LCM of 5 and 4

➠\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:4\:, \: 5 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:2\:, \: 5 \:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:1\:, \: 5 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1\:, \: 1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

So, LCM of 5 and 4 is 20

  • As we know that,

  • To find the operation of additions or subtraction in rational numbers, we will divide the LCM by denominator and then we will multiply the outcome with numerator.

So,

= \: \sf \: \dfrac{2 \times 4 + 3 \times 5}{20}

= \: \sf \: \dfrac{8 + 15}{20}

= \: \sf \: \dfrac{23}{20}

\bf \: (ii) \: \sf \: - \: \dfrac{2}{7} + \dfrac{4}{3}

Firstly, We have to find the LCM of 7 and 3

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:7\:, \: 3 \:\:}}}\\ {\underline{\sf{7}}}& \underline{\sf{\:\:7\:, \: 1 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:, \: 1 \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

So, LCM of 3 and 7 is 21

As we know that,

To find the operations of addition or subtraction of rational numbers, we will divide the LCM by enominator and then we will multiply the outcome with numerator.

So,

= \: \sf \: \dfrac{ - 2 \times 3 + 4 \times 7}{21}

= \: \sf \: \dfrac{ - 6 + 28}{21}

= \: \sf \: \dfrac{22}{21}

⟹ \bf \: (iii) \: \sf \: \dfrac{4}{3} \:-\: \dfrac{2}{3} \: + \: \dfrac{3}{11}

Firstly, We have to find the LCM of 3 and 11.

★\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:11\:, \: 3 \:\:}}}\\ {\underline{\sf{11}}}& \underline{\sf{\:\:11\:, \: 1 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:, \: 1 \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

  • So, LCM of 11 and 3 is 33.

  • As we know that,

To find the operations of addition or subtraction of rational numbers, we will divide the LCM by enominator and then we will multiply the outcome with numerator.

= \: \sf \: \dfrac{4 \times 11 - 2 \times 11 + 3 \times 3}{33}

= \: \sf \: \dfrac{44 - 22 + 9}{33}

= \: \sf \: \dfrac{22 + 9}{33}

= \: \sf \: \dfrac{31}{33}

Similar questions