Math, asked by simra4825, 1 month ago

 \huge\color{pink}\mathfrak{Answer}

 \sf\color{red}{prove \: that \:  \frac{cotA}{1 - cotA}  +  \frac{tanA}{1 - tanA}  =  - 1}





Ans it ASAP

DO FOLLOW​

Answers

Answered by selviyashwant
2

Hope \:  so  \: that \:  it \:  was \:  useful

Attachments:
Answered by sharanyalanka7
5

Answer:

Step-by-step explanation:

To Prove :-

\dfrac{cotA}{1-cotA}+\dfrac{tanA}{1-tanA} = -1

Solution :-

Taking L.H.S :-

\dfrac{cotA}{1-cotA}+\dfrac{tanA}{1-tanA}\\

We know that :- cotA = 1\tanA

= \dfrac{\dfrac{1}{tanA}}{1-\dfrac{1}{tanA}}+\dfrac{tanA}{1-tanA}

= \dfrac{\dfrac{1}{tanA}}{\dfrac{tanA-1}{tanA}}+\dfrac{tanA}{1-tanA}

= \dfrac{1}{tanA-1}+\dfrac{tanA}{1-tanA}

Taking "-" common :-

= \dfrac{1}{-(1-tanA)}+\dfrac{tanA}{1-tanA}

= \dfrac{-1}{1-tanA}+\dfrac{tanA}{1-tanA}

= \dfrac{-1+tanA}{1-tanA}

Taking "-" common :-

= \dfrac{-1(1-tanA)}{1-tanA}

= -1

Hence Proved

Similar questions