Math, asked by simra4825, 3 months ago

 \huge\color{pink}\mathfrak{Answer}

\sf{Prove\:That\:cosecθ-cotθ=\frac{sinθ} {1+cosθ}}

Answers

Answered by brainlyofficial11
4

\sf{To\: Prove} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \\  \bold{{\:cosecθ-cotθ=\frac{sinθ} {1+cosθ}}}

__________________________

 \bold{LHS =cosecθ-cotθ }

and

 \bold{RHS =\frac{sinθ} {1+cosθ} } \\

__________________________

now, we solve LHS

 \bold{LHS =cosecθ-cotθ }

and we know that,

 \boxed{\bold{cosec \theta =  \frac{1}{sin \theta} \:  \: and \:  \: cot \theta =  \frac{cos \theta}{sin \theta}  } } \\

 \bold{ :  \implies LHS =  \frac{1}{sin \theta}  -  \frac{cos \theta}{sin \theta} } \\  \\  \bold{:  \implies \:LHS =  \frac{1 - cos \theta}{sin \theta}  } \:  \:  \:  \:  \:  \:  \\

now, multiple (1 + cos theta) by both numerator and denominator

 \bold{: \implies  LHS =  \frac{(1 - cos \theta) \times (1 +  cos \theta)}{sin \theta(1 + cos \theta)} } \\  \\  \bold{: \implies LHS =  \frac{1 -  {cos}^{2} \theta }{sin \theta(1 + cos \theta)} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

and we know that

 \bold{1 -  {cos}^{2}  \theta =  {sin}^{2}  \theta}

 \bold{: \implies LHS =  \frac{   \cancel{sin}^{2}  \theta }{ \cancel{sin \theta}(1 + cos \theta)}}  \:  \:  \:  \: \\  \\  \bold{: \implies LHS =  \frac{sin \theta}{1 + cos \theta}  =RHS  }

hence, proved

Answered by Beshram
2

Let the L.H.S of the given equation

LHS=

cosecθ−cotθ

1

sinθ

1

=

cosecθ−cotθ

1

×

cosecθ+cotθ

cosecθ+cotθ

sinθ

1

=

cosec

2

θ−cot

2

θ

cosecθ+cotθ

sinθ

1

=

1

cosecθ+cotθ

sinθ

1

=

sinθ

sinθ(cosecθ+cotθ)−1

=

sinθ

1+cosθ−1

=

sinθ

1

+

sinθ

cosθ

sinθ

1

=

sinθ

1

+cotθ−cosecθ

=

sinθ

1

−(cosecθ−cotθ)

=

sinθ

1

−(cosecθ−cotθ)×

(cosecθ+cotθ)

(cosecθ+cotθ)

=

sinθ

1

(cosecθ+cotθ)

1

Similar questions