Math, asked by simra4825, 3 months ago

 \huge\color{pink}\mathfrak{Help Needed }
\color{blue}\fbox \color{red}{Prove\:That\:}
[/tex]\sf{cosec - cot = \frac{sin}{1 + cos} }[/tex]

ANS IT ASAP PLZ ​

Answers

Answered by minasj223
0

Answer:

dear half question is not visible

Answered by AbhinavRocks10
2

{\large{\underbrace{\textsf{\textbf{\color{red}{➵}{\color{green}{\:\:ᴀɴsᴡᴇя\: :-}}}}}}}

\sf\begin{gathered} \frac{ \sin(a) }{1 - \cos(a) } \\ = \frac{ \sin(a) }{1 - \cos(a) } \times \frac{1 + \cos(a) }{1 + \cos(a) } \\ = \frac{ \sin(a)(1 + \cos(a) }{1 - { (\cos(a)) }^{2} } \\ = \frac{ \sin(a)(1 + \cos(a) }{ ({ \sin(a)) }^{2} } \\ = \frac{1 + \cos(a) }{ \sin(a) } \\ = \frac{1}{ \sin(a) } + \frac{ \cos(a) }{ \sin(a) } \\ = \csc(a) + \cot(a) \end{gathered}

HOPE IT HELPS!!!

Similar questions