Math, asked by simra4825, 1 month ago

 \huge\color{pink}\mathfrak{Help\:Needed}

\sf\color{red}{Prove\:That \:  \sqrt{ \frac{1 + cos}{1 - cos} }  = cosec + cot}



PLZ ANSWER ASAP

DO FOLLOW ​

Answers

Answered by ripinpeace
1

Step-by-step explanation:

I swear ! Making an answer 20 words long is hard

Attachments:
Answered by OoINTROVERToO
1

Step-by-step explanation:

(1 + cosA)/(1 - cosA) = cosecA + cotA

  • Solving LHS

√[(1 + cosA)/(1 - cosA)]

  • Rationalising LHS , we get

√[(1 + cosA)² / (1)² - (cosA)²]

  • Using Identity a² - b² = (a+b)(a-b), we get

√[(1 + cosA)² / 1 - cos²A]

  • 1 - cos²A = sin²A

√[(1 + cosA)² / sin²A]

(1 + cosA) / sinA

cosec A + cotA

Similar questions