Math, asked by Anonymous, 10 months ago


 \huge \color {red}{help \: required}

Attachments:

Answers

Answered by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ
3

Answer:

Given \:  AD  \: is  \: bisector \:  ∠CAF</p><p></p><p></p><p>

to \: prove

 \frac{ba}{ac}  =  \frac{bd}{dc}

Hence \:  ∠ACE=∠CAD \\  (Alternate interior angles)</p><p></p><p></p><p>

</p><p>∠AEC=∠FAD \\  (Corresponding angles)</p><p></p><p>

Thus, ∠AEC=∠ACE \\ ⇒AE=AC

Now \:  EC∥AD

Thus  \: by \:  basic  \:   proportional \\   \: theorem

( \frac{ba}{ae} ) = ( \frac{bd}{cd} )

</p><p>⇒(\frac{AC}{BA}) =(\frac{DC}{BD})  since AE=AC</p><p></p><p>

\huge \color {grey}{mark \: as \: brainliest}

\huge\color {red}{also \: follow \: me..}

Answered by naTEA
2

Answer:

u should inbox now as u mentioned in bio be honest

Similar questions