Math, asked by XxMissInnocentxX, 1 month ago


 \huge \color{red}Question -
An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term.

★Note : Don't Spam​

Answers

Answered by BrainlyRish
2

\bf{Given \::}\begin {cases} & \sf { a_{12} \:or \:Third \:term\:of\:A.P \: is\:12 }\\\\ & \sf{a_{50}\;or\:50th\:term\:or\:Last\:term \:of\:A.P\:is\:106\:}\end{cases}\\\\

Exigency To Find : The 29 th term of A.P .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\dag\frak{\underline {We,\:know\:that\;;}}\\

\dag\:\:\boxed {\sf{ a_{n} = a + (n-1)d}}\\

Where,

  • a is the first term of A.P.
  • n is the n th term of A.P.
  • d is the Common difference

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that ,

  • Third Term of A.P is 12 .

Or ,

  • :\implies \sf { a_3 \:or\:12\:= a + ( 3 -1 ) d}\\\\

⠀⠀⠀⠀⠀:\implies \sf {\:12\:= a + ( 3 -1 ) d}\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:12\:= a + 2 d}\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:12- 2d\:= a  }\\\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:a= 12 - 2d \bigg) \qquad \longrightarrow Eq.1 }\\\\

Given that ,

  • Last Term or 50 th Term of A.P is 106 .

Or ,

  • :\implies \sf { a_{50} \:or\:106\:= a + ( 50 -1 ) d}\\\\

⠀⠀⠀⠀⠀:\implies \sf {\:106\:= a + ( 50 -1 ) d}\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:106\:= a + 49 d}\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:106- 49d\:= a  }\\\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:a= 106 - 49d \bigg) \qquad \longrightarrow Eq.2 }\\\\

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: From\: Eq.1 \: and \: Eq.2 \:  \::}}\\

  • :\implies \bf { \bigg(\:a= 12 - 2d \bigg) \qquad \longrightarrow Eq.1 }\\\\

  • :\implies \bf { \bigg(\:a= 106 - 49d \bigg) \qquad \longrightarrow Eq.2 }\\\\

Therefore,

⠀⠀⠀⠀⠀:\implies \sf { \: 12 - 2d = 106- 49d  }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:  - 2d = 106-12- 49d  }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:  - 2d + 49 d = 106- 12  }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:  47d = 94  }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:  d =\cancel {\dfrac{94}{47}}  }\\\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:d = 2 \bigg) \qquad  }\\\\

⠀⠀⠀⠀⠀⠀\underline {\mathrm{\star\:Now \: By \: Substituting \:d=2\:in\: the \: Equation \: 1 \::}}\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:a= 12 - 2d \bigg) \qquad \longrightarrow Eq.1 }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:a= 12 - 2(2)  }\\\\

⠀⠀⠀⠀⠀:\implies \sf { \:a= 12 - 4  }\\\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:a = 8 \bigg) \qquad  }\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Finding 29 th term of A.P.

  • The 29 th Term of A.P is a_{29}

Or ,

  • :\implies \sf { a_{29} \:\:= a + ( 29 -1 ) d}\\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf { a_{29} \:\:= 8 + ( 29 -1 ) 2}\\\\

⠀⠀⠀⠀⠀:\implies \sf { a_{29} \:\:= 8 + ( 28) 2}\\\\

⠀⠀⠀⠀⠀:\implies \sf { a_{29} \:\:= 8 + 56}\\\\

⠀⠀⠀⠀⠀:\implies \bf { \bigg(\:a_{29} = 64 \bigg) \qquad  }\\\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\: The\:29^{th}\;Term \:of\:A.P\:is\:\bf{64\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by shaluyadav8757
20

Answer:

good night friends mara kal birthday ha party ma jur aana

Similar questions