If x = 1 - 2 - √3 , then find the value of x³- 2x² - 7x + 5
✿ Need Help ☹️
✿ Thank Youu ❤️
✿ Please Don't Spam ✅
✿ Always ready to help People ☺️
Answers
Solution:-
Given that
x = 1 - 2 - √3
x = - 1 - √3
We have to find the value of
x³ - 2x² - 7x + 5
Putting the value of x
(- 1 - √3)³ - 2(- 1 - √3)² - 7(- 1 - √3) + 5
Using (a - b)³ = a³ - 3a²b + 3ab² - b³ to expand the expression.
= - 1 - 3√3 - 9 - 3√3 - 2(- 1 - √3)² - 7(- 1 - √3) + 5
Factorising the negative sign from the expression.
= - 1 - 3√3 - 9 - 3√3 - 2(- (1 + √3))² - 7(- 1 - √3) + 5
Distribute - 7 through the parentheses.
= - 1 - 3√3 - 9 - 3√3 - 2(- (1 + √3))² + 7 + 7√3 + 5
A negative base raised to an even power equals a positive.
= - 1 - 3√3 - 9 - 3√3 - 2(1 + √3)² + 7 + 7√3 + 5
Use (a + b)² = a² + 2ab + b² to expand the expression.
= - 1 - 3√3 - 9 - 3√3 - 2(1 + 2√3 + 3) + 7 + 7√3 + 5
Add the numbers.
= - 1 - 3√3 - 9 - 3√3 - 2(4 + 2√3) + 7 + 7√3 + 5
Distribute - 2 through the parentheses.
= - 1 - 3√3 - 9 - 3√3 - 8 - 4√3 + 7 + 7√3 + 5
Calculate the sum and difference.
= - 6 - 3√3 - 3√3 - 4√3 + 7√3
Grouping the like terms.
= - 6 - 3√3
Anita hassanadani bhi hai cast mai
aur mere questions dekh kuch blank hai inke answers dedo please