Math, asked by Anonymous, 4 months ago

\huge\colorbox {pink}{Question}


The length of a rectangular field is 60 m and the breadth is \frac{2}{3} of its length find the area of the field.


Note:-

[Don't spam]
[Full Explanation]
[No Copy Pastes]



Answers

Answered by snehitha2
114

Answer:

The required area of the rectangular field is 2400 m²

Step-by-step explanation:

Given :

  • The length of a rectangular field is 60 m
  • The breadth is 2/3 of its length

To find :

the area of the rectangular field

Solution :

 

  • Let the length of the rectangular field be L

       L = 60 m

  • Let breadth of the rectangular field be B

The breadth is 2/3 of its length

B = 2L/3

B = 2(60)/3

B = 120/3

B = 40 m

∴ The breadth of the rectangular field is 40 m

 \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 60 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 40 m}\end{picture}

Area of the rectangular field :

Area of the rectangle = length × breadth

➙ Area of the rectangular field = 60 m × 40 m

➙ Area of the rectangular field = 2400 m²

Therefore, the required area of the rectangular field is 2400 m²

Answered by Anonymous
876

Answer:

\large\bf\underline{\underline \green{Given}}-

  • \pink\longrightarrow\small\sf \pink{The \: length \: of \: a \: rectangular \: field \: is \: 60 m}
  • \pink\longrightarrow\small\sf \pink{The \: breadth \: is \: 2/3 \: of \: its \: length }

\bf \underline{\underline \orange{To \: Find}} -

  • \pink\longrightarrow\small\sf \purple{Area \: of \: Rectangular \: Field }

\large\bf\underline{\underline \green{Solution}} -

Here,

  • \purple\longrightarrow\small\sf \pink{Length} = \purple{L}
  • \purple\longrightarrow\small\sf \pink{Breadth}=\purple{B}

Firstly We Find The Breadth.

We known that

  • Be is 2/3 of it's length.

So,

  •  \blue\Longrightarrow\small \sf \pink{B} = \purple {L× \dfrac{2}{3}}

  •  \blue\Longrightarrow\small \sf \pink{B} =  \purple {\dfrac{2L}{3}}

  • \blue\Longrightarrow\small\sf \pink{B}= \purple{\dfrac{2 \times 60}{3} }

  • \blue\Longrightarrow\small\sf\pink{B}=\purple{\cancel\dfrac{120}{3}}

  • \blue\Longrightarrow\small\sf \pink{B} = \purple{40m}

Now, we know that the field's breath is 40 cm.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,we find the area of Field.

  •  {\green\Longrightarrow{\small \sf \red{Area \: of \: Rectangle \: is} =  \blue{Length × Breadth }}}

So,

  •  {\green\Longrightarrow\small \sf \red{Area \: of \: Rectangular \: Field} = \blue{60 \times 40}}
  •  {\green\Longrightarrow\small \sf \red{Area \: of \: Rectangular \: Field \: is } = \blue{2400  \:{m}^{2}}}

Therefore -

The Area of Rectangular Field is 2400 m².

\bf\underline{\underline \orange{More \: Useful \: Formulas}}

  • {\blue\longrightarrow\small\sf \purple{Area\:of \:Rectangle}= \pink{ Length × Breadth}}
  • {\blue\longrightarrow\small\sf \purple{Perimeter \:of \:Rectangle}= \pink{ 2(Length × Breadth)}}
Attachments:
Similar questions