Please don't spam.
Answers
Answer:
Given :
a+b+c=4,
a²+b²+c²=10,
a³+b³ + c³ = 22
To Find : a++b+c+=?
Solution:
a+b+c=4
Squaring both sides
=> a+b+c² + 2(ab + bc + ca) = 16
=> 10 + 2(ab + bc + ca) = 16
=> ab + bc + ca = 3
a³+b³ + c³ -3abc = (a + b + c)(a²+b²2+c² - (ab + bc + ca))
=> 22-3abc = (4)(10 - 3)
=> 22-3abc = 28
=> 3abc = -6
=> abc = -2
ab + bc + ca = 3
Squaring both sides
=> > (ab)² + (bc)² + (ac)² + 2(ab.bc + ab.ca + bc.ca) = 9
=> (ab)² + (bc)² + (ac)² + 2abc(a + b + c) = 9
=> (ab)² + (bc)² + (ac)² + 2(-2)(4) = 9
=> (ab)² + (bc)² + (ac)² = 25
a²+b²+c²=10
squaring both sides
=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100
=> a+b+c² + 2(25) = 100
=> a+b+c4 +50= 100
=> a + b + c = 50
a³ + b³ + c³-3abc = (a + b + c)(a + b² + c²-ab- bc - ca).
If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3-36 find value of abc ...
hope it helps you bhai :)