Math, asked by itzmedipayan2, 16 days ago


 \huge \dag \sf  \blue{question}
 \sf \: a + b + c = 4 \\  \\  \sf \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 10 \\  \\  \sf \:  {a}^{3}  +  {b}^{3} +  {c}^{3}   = 24 \\  \\  \sf \: then \: find  \:  {a}^{4}  +  {b}^{4}  +  {c}^{4}
Please don't spam.

Answers

Answered by satyavarapusamantha
7

Answer:

Given :

a+b+c=4,

a²+b²+c²=10,

a³+b³ + c³ = 22

To Find : a++b+c+=?

Solution:

a+b+c=4

Squaring both sides

=> a+b+c² + 2(ab + bc + ca) = 16

=> 10 + 2(ab + bc + ca) = 16

=> ab + bc + ca = 3

a³+b³ + c³ -3abc = (a + b + c)(a²+b²2+c² - (ab + bc + ca))

=> 22-3abc = (4)(10 - 3)

=> 22-3abc = 28

=> 3abc = -6

=> abc = -2

ab + bc + ca = 3

Squaring both sides

=> > (ab)² + (bc)² + (ac)² + 2(ab.bc + ab.ca + bc.ca) = 9

=> (ab)² + (bc)² + (ac)² + 2abc(a + b + c) = 9

=> (ab)² + (bc)² + (ac)² + 2(-2)(4) = 9

=> (ab)² + (bc)² + (ac)² = 25

a²+b²+c²=10

squaring both sides

=> a+b+c+ + 2(a²b² + b²c² + a²c²) = 100

=> a+b+c² + 2(25) = 100

=> a+b+c4 +50= 100

=> a + b + c = 50

a³ + b³ + c³-3abc = (a + b + c)(a + b² + c²-ab- bc - ca).

If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3-36 find value of abc ...

hope it helps you bhai :)

what happened to adi bhai

he is not replying:(

Similar questions