Math, asked by Anonymous, 5 months ago


\huge{\dag} \: {\underline{\boxed{\sf{\purple{ QUESTION }}}}}

slope of a line passing through p(2,3) and intersecting the line x+y=7 at a distance of 4 units from p is ​

Answers

Answered by Anonymous
5

\huge\green{ \underline{ \boxed{ \sf{Question-}}}}

slope of a line passing through p(2,3) and intersecting the line x+y=7 at a distance of 4 units from p is

\huge\green{ \underline{ \boxed{ \sf{answer-}}}}

[ distance of line x + y = 7 from point P(2,3) = |2 + 3 - 7|/√(1² + 1²) = √2. so slope of unknown line passing through P(2,3) is (√7 - 1)/(1 + √7).

Answered by Anonymous
25

\mathfrak{\bf{\underline{\underline{REFER \  ATTACHMENT \ FOR \ FIGURE :}}}}

\mathfrak{\bf{\underline{\underline{ANSWER \ :}}}}

⟶ ㅤwє knσw pαrαmєtríc fσrm σf ѕtrαíght línє íѕ

 \impliesㅤㅤㅤㅤ \frac{x - x_{1}}{ \cos \theta }   =  \frac{y - y_{1}}{ \sin \theta }  = r \\

 \implies  \:   ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\frac{x - 2}{ \cos \theta }  =  \frac{y - 3}{sin\theta}  = 4 \\

 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎point \: A = (4 + 2cos \theta \: , \: 4 + 3sin \theta) \\

  ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎x = 4 + 2 \cos\theta \\ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ y = 4 + 3sin \theta \\

⟶pσínt A líєѕ σn thє línє \mathtt {⟶ \  x \ + \  y \ = \ 7 \ }

(4 + 2cos \theta) + (4 + 3sin \theta) = 7 \\

cos \theta \:   + sin \theta =  \frac{1}{2}  \\

⟶ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ѕquαríng вσth ѕídєѕ

 \implies \:  \:  \:  \:  \:  \:  \: (cos \theta   \:  +   \: sin  \theta) ^{2}  =    { (\frac{1}{2} )}^{2}   \\

 \implies \:  \:  \:  \:  \:  {cos }^{2}  \theta \:  +  {sin}^{2}  \theta  \:  + 2. \: sin \theta .\: cos \theta =  \frac{1}{4}  \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \: 1 + sin  \ 2 \theta \:  =  \frac{1}{4}  \\

 \implies ‎ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ‎ ‎sin2 \theta \:   =   - \frac { 3}{4}  \\

 \implies \:  \:  \:  \:  \:  \:  \:  \frac{2tan \theta}{1 +  {tan}^{2}  \theta }  =   - \frac{3}{4}   \\

 \implies \:  \:  \:  \:  \:  \:  \:  \: 3 {tan}^{2}  \theta \:  + 8tan  \theta \:  + 3 = 0

 \bold {⟶  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:put \: tan \theta = m}

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3 {m}^{2}  + 8m + 3 = 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a = 3 \:  \: b  = 8 \:  \:  \:  \: c = 3 \\

  \implies \:  \:  \:  {b}^{2}  - 4ac =  {8}^{2}  - 4(3)(3)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies  \:  \:  \:  \:  \:  \:  \:  \: 64 - 36   \\ \implies \:  \:  \:  \:  \:  \:  \: 28

 \implies \:  \:  \:  \:  \:  \:m =   \:  \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2}  - 4ac}  }{2a}  \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:m =   \:  \:  \frac{ - 8  \binom{ + }{ - } {  \sqrt{28}   } }{2 \times 3}  \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:m =   \:  \:  \frac{ - 8 \binom{ + }{ - } 2 \sqrt{7} }{6}  \\

\implies  \:  \:  \:  \:  \:  \: \: tan \theta \:  =  \frac{ - 8 \binom{ + }{ - } 2 \sqrt{7} }{6 }  \\

⟶ѕσ ѕlσpє = tan \theta \:  =  \frac{ - 8 \binom{ + }{ - } 2 \sqrt{7} }{6 }  \\

 \therefore \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{slope \:  =  \frac{ - 8 \binom{ + }{ - } 2 \sqrt{7} }{6}  }\\

Similar questions