Math, asked by itzmedipayan2, 1 day ago


 \huge \dashrightarrow \sf    \red{\underline\blue {question}}
 {3}^{2x + 1}  4(3^{x} ) - 15 = 0
Please don't spam.
Don't take screenshot from web.
Really appreciated if used latex or done in copy :)

Thank You!​

Answers

Answered by Anonymous
38

 \underline\bold \red{Thanks \:  for \:  your \:  question} \\  \\   \bold \blue{Given : \: }  \\  \\ {3}^{2x + 1} 4(3^{x} ) - 15 = 0 \\  \\  \bold \red{Solution :}   \\  \\ =  >  {3}^{2x + 1} 4(3^{x} ) - 15 = 0 \\  \\ =  >  3 {}^{2x + 1 + x}  \times 4 - 15 = 0 \\  \\  =  > 3 {}^{3x + 1}  \times 4 - 15 = 0 \\  \\ =  >  3 {}^{3x + 1}  \times 4 = 15 \\  \\  =  > 3 {}^{3x + 1} =  \frac{15}{4}  \\  \\ =  >  3x + 1 =  log_{3} \frac{15}{4 }  \\  \\  =  > 3x + 1 =  \frac{ log \frac{15}{4} }{ log_{3} }  \\  \\ =  >  3x = \frac{ log \frac{15}{4} }{ log_{3} } - 1 \\  \\  =  > x =  \frac{   \frac{  log\frac{15}{4} }{ log_{3} } }{3}  -  \frac{1}{3} \\  \\ =  >  x =    \frac{log\frac{15}{4}  }{3 log3}   -  \frac{1}{3} \\ \\ => \bold\pink{ x = 0.242\: approx.}

Answered by Bindassbebo
10

Answer:

Hope this will help you your answer will be

x = 0.242approx

Thank my all answers and follow

Attachments:
Similar questions