Math, asked by Anonymous, 1 day ago

   \huge\displaystyle  \red{\tt\int_{0}^{ \frac{\pi}{2} }  ln( \sin(x) )  \: dx}

Answers

Answered by senboni123456
14

Step-by-step explanation:

We have,

 \displaystyle \tt{I =  \int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin(x) \right) \: dx }

 \displaystyle \tt{  \implies \: I =  \int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin \left( \dfrac{\pi}{2}  - x \right) \right) \: dx }

 \displaystyle \tt{  \implies \: I =  \int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  cos(x) \right) \: dx }

 \displaystyle \tt{  \implies \: 2I =\int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin(x) \right) \: dx +   \int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  cos(x) \right) \: dx }

 \displaystyle \tt{  \implies \: 2I =\int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin(x) \right) +\ln \left(  cos(x) \right) \: dx }

 \displaystyle \tt{  \implies \: 2I =\int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin(x) \:  cos(x) \right) \: dx }

 \displaystyle \tt{  \implies \: 2I =\int^{ \frac{\pi}{2} }_{0} \:  \ln \left(   \dfrac{sin(2x)}{2} \right) \: dx }

 \displaystyle \tt{  \implies \: 2I =\int^{ \frac{\pi}{2} }_{0} \:  \ln \left(  sin(2x) \right) \: dx -  \ln(2)  \int^{ \frac{\pi}{2} }_{0} \: dx}

Put 2x = t, so,

 \displaystyle \tt{  \implies \: 2I = \dfrac{1}{2} \int^{ \pi}_{0} \:  \ln \left(  sin(t) \right) \: dt -  \ln(2)  \int^{ \frac{\pi}{2} }_{0} \: dx}

 \displaystyle \tt{  \implies \: 2I = \dfrac{1}{2} \cdot2 \int^{  \frac{\pi}{2}}_{0} \:  \ln \left(  sin(t) \right) \: dt -  \ln(2)  \int^{ \frac{\pi}{2} }_{0} \: dx}

 \displaystyle \tt{  \implies \: 2I =  \int^{  \frac{\pi}{2}}_{0} \:  \ln \left(  sin(t) \right) \: dt -  \ln(2)  \int^{ \frac{\pi}{2} }_{0} \: dx}

 \displaystyle \tt{  \implies \: 2I =  I -  \ln(2)  \left[x \right] ^{ \frac{\pi}{2} }_{0} }

 \displaystyle \tt{  \implies \: I = -  \ln(2)  \left[ \dfrac{\pi}{2}  - 0 \right]  }

 \displaystyle \tt{  \implies \: I = - \dfrac{\pi}{2} \ln(2)   }

Similar questions