Math, asked by tqsmjixd02, 2 months ago

\huge \displaystyle\sf\lim\limits_{x\to\infty}\sqrt[x]{\dfrac{x!}{x^{x}}}Or\displaystyle\sf\lim\limits_{x\to\infty}\left(\dfrac{x!}{x}\right)^{\left(\dfrac{1}{x}\right)}
no spam xd ​

Answers

Answered by Anonymous
8

An atmosphere is a layer or a set of layers of gases surrounding a planet or other material body, that is held in place by the gravity of that body. An atmosphere is more likely to be retained if the gravity it is subject to is high and the temperature of the atmosphere is low.

Answered by Anonymous
44

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{Answer࿐}}}

\large \pmb{\bf{\underline{\gray{Solution :-}}}}

 \sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides, we get

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

 \pmb{\sf{\gray{ Put\ value\ of\ x! }}}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}

\pmb{\tt{Multiplying \ with\ ( x - 1 )\ in\ numerator\ and\ denominator\, we\ get\ }}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

 \pmb{\sf{We\ know\ that}}

 \sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

 \sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

 \sf {ln(L)=(\infty) \left(1-0\right)}

 \sf {ln(L)=\infty}

 \sf{L=e^{\infty}}

 \sf{L=\infty}

\bold\mathbb{Answered \: By \: Ayush8378 }

=============•✠•============

Similar questions
Math, 2 months ago