Math, asked by Anonymous, 1 month ago

\huge \displaystyle\sf\lim\limits_{x\to\infty}\sqrt[x]{\dfrac{x!}{x^{x}}}Or\displaystyle\sf\lim\limits_{x\to\infty}\left(\dfrac{x!}{x}\right)^{\left(\dfrac{1}{x}\right)}​​

Answers

Answered by Anonymous
39

\sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides, we get,

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

put value of x

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}

multiplying with ( x - 1 ) is numurals

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

We know that,

\sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

\sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

\sf {ln(L)=(\infty) \left(1-0\right)}

\sf {ln(L)=\infty}

\sf{L=e^{\infty}} \:

\sf{L=\infty}

Similar questions