Math, asked by Anonymous, 1 month ago

\huge \displaystyle\sf\lim\limits_{x\to\infty}\sqrt[x]{\dfrac{x!}{x^{x}}}Or\displaystyle\sf\lim\limits_{x\to\infty}\left(\dfrac{x!}{x}\right)^{\left(\dfrac{1}{x}\right)}​​

Answers

Answered by oObabyboyoO
8

Given :

The Ratio of present ages of arti and arjun is 5:3 .

Arti's age is 45 yrs .

To Find :

Present age of Arjun .

Solution :

\longmapsto\tt{Let\:present\:age\:of\:Arti\:be=5x}⟼LetpresentageofArtibe=5x

\longmapsto\tt{Let\:present\:age\:of\:Arjun\:be=3x}⟼LetpresentageofArjunbe=3x

As Given that Age of Arti is 45 . So ,

\longmapsto\tt{5x=45}⟼5x=45

\longmapsto\tt{x=\cancel\dfrac{45}{5}}⟼x=

5

45

\longmapsto\tt\bf{x=9}⟼x=9

Value of x is 9 .

Therefore :

\longmapsto\tt{Present\:age\:of\:Arjun=3(9)}⟼PresentageofArjun=3(9)

\longmapsto\tt\bf{27\:years}

Given :

The Ratio of present ages of arti and arjun is 5:3 .

Arti's age is 45 yrs .

To Find :

Present age of Arjun .

Solution :

\longmapsto\tt{Let\:present\:age\:of\:Arti\:be=5x}⟼LetpresentageofArtibe=5x

\longmapsto\tt{Let\:present\:age\:of\:Arjun\:be=3x}⟼LetpresentageofArjunbe=3x

As Given that Age of Arti is 45 . So ,

\longmapsto\tt{5x=45}⟼5x=45

\longmapsto\tt{x=\cancel\dfrac{45}{5}}⟼x=

5

45

\longmapsto\tt\bf{x=9}⟼x=9

Value of x is 9 .

Therefore :

\longmapsto\tt{Present\:age\:of\:Arjun=3(9)}⟼PresentageofArjun=3(9)

\longmapsto\tt\bf{27\:years}

Similar questions