Math, asked by Anonymous, 1 day ago

 \huge\displaystyle  \sf \red{\int_{0}^{1} (x!)^{dx} }

Answers

Answered by sajan6491
3

\displaystyle \sf \red{\int_{0}^{1} (x!)^{dx} }

\displaystyle \sf \red{\int_{0}^{1} ( \Gamma(x + 1))^{dx} }

\displaystyle  \sf \red{\prod^{1}_{0} {{}^{} ( \Gamma(x + 1))^{dx} }}

\displaystyle \sf \red{\int_{p}^{} ( \Gamma(x + 1))^{dx} }

\displaystyle \sf \red{exp \bigg(\int_{0}^{1} ln ( \Gamma(x + 1) \bigg)^{}dx }

\displaystyle \sf \red{exp \bigg({}^{} ln  \bigg(  \frac{ \sqrt{2\pi} }{e} \bigg) \bigg)^{} }

\displaystyle \sf \red{    \frac{ \sqrt{2\pi} }{e} }

Similar questions