Math, asked by Anonymous, 5 hours ago

 \huge \displaystyle  \sf \red{\int_{0}^{ \frac{\pi}{4} } x \prod \limits_{k = 1}^{ \infty }  \cos( \frac{x}{2 {}^{k} } )  \: dx}

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

\displaystyle \: I  = \sf {\int_{0}^{ \frac{\pi}{4} } x \prod \limits_{k = 1}^{ \infty } \cos \left( \frac{x}{2^{k} }  \right) \: dx}

Consider the series

\displaystyle  S= \sf {cos \left( \dfrac{x}{2 }  \right)  \cdot \: cos \left( \dfrac{x}{2^{2} }  \right) \cdot  \:cos \left( \dfrac{x}{2^{3} }  \right)  \cdots \: cos \left( \dfrac{x}{2^{n} }  \right) } \\

\displaystyle   \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}cos \left( \dfrac{x}{2 }  \right)  \cdot \: cos \left( \dfrac{x}{2^{2} }  \right) \cdot  \:cos \left( \dfrac{x}{2^{3} }  \right)  \cdots \: cos \left( \dfrac{x}{2^{n} }  \right) } \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}cos \left( \dfrac{x}{2^{n} }  \right)  \cdot \: cos \left( \dfrac{x}{2^{n - 1} }  \right) \cdot  \:cos \left( \dfrac{x}{2^{n - 2} }  \right)  \cdots \: cos \left( \dfrac{x}{2 }  \right) } \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}cos \left( \dfrac{x}{2^{n} }  \right)  \cdot \: cos \left(2 \cdot \dfrac{x}{2^{n } }  \right) \cdot  \:cos \left(  {2}^{2}  \cdot\dfrac{x}{2^{n} }  \right)  \cdots \: cos \left(  {2}^{n - 1}  \cdot\dfrac{x}{2^{n} }  \right) } \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}  \dfrac{sin \left(  {2}^{n}  \cdot \dfrac{x}{ {2}^{n} } \right)}{ {2}^{n}  \cdot \: sin \left( \dfrac{x}{ {2}^{n} } \right)}} \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}  \dfrac{sin \left( x\right)}{ {2}^{n}  \cdot \: sin \left( \dfrac{x}{ {2}^{n} } \right)}} \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}  \dfrac{x \cdot \: sin \left( x\right)}{ {2}^{n}  \cdot x \cdot\: sin \left( \dfrac{x}{ {2}^{n} } \right)}} \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf {\lim_{n \to \infty}  \dfrac{ \: sin ( x) \cdot \dfrac{x}{ {2}^{n} } }{   x \cdot\: sin \left( \dfrac{x}{ {2}^{n} } \right)}} \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf { \dfrac{sin(x)}{x}\lim_{n \to \infty}  \dfrac{  \dfrac{x}{ {2}^{n} } }{ sin \left( \dfrac{x}{ {2}^{n} } \right)}} \\

\displaystyle   \implies \lim_{n \to \infty} S= \sf { \dfrac{sin(x)}{x}} \\

Now,

\displaystyle \: I  = \sf {\int_{0}^{ \frac{\pi}{4} } x \cdot  \dfrac{ sin(x) }{x}  \: dx}

\displaystyle \: \implies I  = \sf {\int_{0}^{ \frac{\pi}{4} }  sin(x)   \: dx}

\implies I  =  - \sf {  [cos(x)]_{0}^{ \frac{\pi}{4} }    }

\implies I  =  - \sf {   \left[cos \left( \dfrac{\pi}{4}  \right)  -  cos(0) \right]   } \\

\implies I  =   \sf {     cos(0) - cos \left( \dfrac{\pi}{4}  \right) } \\

\implies I  =   \sf {     1 -  \dfrac{1}{ \sqrt{2} }   } \\

\implies I  =   \sf {      \dfrac{ \sqrt{2}  - 1}{ \sqrt{2} }   } \\

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \displaystyle \rm {\int_{0}^{ \dfrac{\pi}{4} } x \prod \limits_{k = 1}^{ \infty } \cos( \frac{x}{2 {}^{k} } ) \: dx}

Let we first evaluate

\rm :\longmapsto\:\prod \limits_{k = 1}^{ \infty } \cos( \frac{x}{2 {}^{k} } )

can be rewritten as

 \rm \:  =  \:\displaystyle\lim_{n \to  \infty }\rm  \prod \limits_{k = 1}^{n} \cos( \frac{x}{2 {}^{k} } )

 \rm \:  =  \:\displaystyle\lim_{n \to  \infty }\rm   \cos\bigg[\dfrac{x}{2} \bigg]cos\bigg[\dfrac{x}{ {2}^{2} } \bigg]cos\bigg[\dfrac{x}{ {2}^{3} } \bigg] -  - cos\bigg[\dfrac{x}{ {2}^{n} } \bigg]

We know,

\rm :\longmapsto\:\boxed{\tt{  \: cosx = \dfrac{sin2x}{2 \: sinx}}}

So, using this, we get

 \rm \:=\displaystyle\lim_{n \to  \infty }\rm \dfrac{sin\bigg[x \bigg]}{2 \: sin\bigg[\dfrac{x}{2} \bigg]}\dfrac{sin\bigg[\dfrac{x}{2} \bigg]}{2 \: sin\bigg[\dfrac{x}{4} \bigg]}  -  - \dfrac{sin\bigg[\dfrac{x}{ {2}^{n - 1} } \bigg]}{2 \: sin\bigg[\dfrac{x}{ {2}^{n} } \bigg]}

 \rm \:=\displaystyle\lim_{n \to  \infty }\rm \dfrac{sin\bigg[x \bigg]}{ {2}^{n}  \: sin\bigg[\dfrac{x}{ {2}^{n} } \bigg]}

 \rm \:=\displaystyle\lim_{n \to  \infty }\rm \dfrac{sin\bigg[x \bigg]}{ \dfrac{ {2}^{n} }{x}  \: sin\bigg[\dfrac{x}{ {2}^{n}} \bigg] \times x}

We know,

\boxed{\tt{ \displaystyle\lim_{x \to  \infty }\rm  \frac{sin\bigg[\dfrac{1}{x} \bigg]}{ \dfrac{1}{x} }  = 1}}

So, using this, we get

 \rm \:= \: \dfrac{sinx}{x} \:  \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{ \dfrac{ {2}^{n} }{x}  \: sin\bigg[\dfrac{x}{ {2}^{n}} \bigg] }

 \rm \:  =  \: \dfrac{sinx}{x}

Hence,

\rm \: \implies \: \boxed{\tt{ \prod \limits_{k = 1}^{ \infty } \cos\bigg( \dfrac{x}{2 {}^{k} } \bigg) =  \dfrac{sinx}{x} }}

Now, Consider

\rm :\longmapsto\: \displaystyle \rm {\int_{0}^{ \dfrac{\pi}{4} } x \prod \limits_{k = 1}^{ \infty } \cos( \frac{x}{2 {}^{k} } ) \: dx}

 \rm \:  =  \: \displaystyle \rm {\int_{0}^{ \dfrac{\pi}{4} } x  \times  \frac{sinx}{x}  \: dx}

 \rm \:  =  \: \displaystyle \rm {\int_{0}^{ \dfrac{\pi}{4} } sinx  \: dx}

 \rm \:  =  \: - \bigg |cosx\bigg|  _{0}^{ \dfrac{\pi}{4} }

 \rm \:  =  \: - \bigg |cos\dfrac{\pi}{4} - cos0 \bigg|

 \rm \:  =  \: - \bigg |\dfrac{1}{ \sqrt{2} } - 1 \bigg|

 \rm \:  =  \: 1 - \dfrac{1}{ \sqrt{2} }

 \rm \:  =  \: \dfrac{ \sqrt{2}  - 1}{ \sqrt{2} }

Hence,

\rm :\longmapsto\:\boxed{\tt{  \displaystyle \rm {\int_{0}^{ \dfrac{\pi}{4} } x \prod \limits_{k = 1}^{ \infty } \cos( \frac{x}{2 {}^{k} } ) \: dx} =  \frac{ \sqrt{2}  - 1}{ \sqrt{2} }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions