Math, asked by Sahan677, 5 hours ago

\huge\displaystyle \sf \red{ \int^{ \infty}_{0} {e}^{ - {x}^{3} } sin( {x}^{3} ) \: dx }

Answers

Answered by MysteriesGirl
22

 \displaystyle \sf \black{ Let \:  I=\int^{ \infty}_{0} {e}^{ - {x}^{3} } sin( {x}^{3} ) \: dx }

   \sf \black{{e}^{ i \theta}  =  \cos \theta + i \sin \theta}

   \sf \black{ \implies{e}^{ i  {x}^{3} }  =  \cos  \: x ^{3} + i \sin  {x}^{3} }

 \displaystyle \sf \black{ I = Img\bigg[\int^{ \infty}_{0} {e}^{ - {x}^{3} }  \cdot {e}^{i {x}^{3} }  \: dx  \bigg]}

 \displaystyle \sf \black{  \implies I = Img\bigg[\int^{ \infty}_{0} {e}^{ - {(1 - i) {x}^{3} }^{} }\: dx  \bigg]}

 \sf \black{(1 - i) {x}^{3}  = t}

 \sf \black{ \implies(1 - i) 3{x}^{2} \: dx  = dt}

 \sf \black{ \implies dx =  \frac{dt}{3(1 - i) {x}^{2} } }

 \sf \black{\because \:  \frac{1}{ {x}^{2}  } =   \bigg(\frac{1 - i}{t}   \bigg)^{ \frac{2}{3} } }

 \sf \black{ \implies dx =  \frac{dt}{3(1 - i) {}^{} } } \:  \:  \:  \:  \:  \sf \black{ \frac{(1 - i)^{ \frac{2}{3} } }{ {t}^{  \frac{2}{3} }} }

 \displaystyle \sf \black{I=Img \bigg[ \int_{0}^{ \infty}  \frac{1}{3(1 - i)^{ \frac{1}{3}  } }  \cdot {t}^{ \frac{ - 2}{3}}  {e}^{ - t}   \: dt\bigg]}

 \displaystyle \sf \black{=Img \bigg[   \frac{1}{3 [2 \sqrt{2} {e}^{ i\frac{\pi}{4} }  ] ^  { \frac{1}{3}  } }  \int_{0}^{ \infty} {t}^{ \frac{ - 2}{3}}  {e}^{ - t}   \: dt\bigg]}

  \sf{\black{ \{{ \: (1 - i) =  \sqrt{2}  \:  {e}^{ - i \frac{\pi}{4} }  \}}}}

 \displaystyle \sf \black{ \int_{0}^{ \infty} {t}^{ \frac{ - 2}{3} }  {e}^{ - t} \: dt =  \Gamma \bigg( \frac{1}{3}  \bigg)}

 \sf \black{I=Img \bigg[ \frac{ {e}^{i \frac{\pi}{12} } }{3( \sqrt{2})^{ \frac{1}{3} }   } \:  \: \Gamma( \frac{1}{3} ) \bigg  ]}

 \sf \black{ \implies I=Img \bigg[   \frac{\Gamma( \frac{1}{3} )}{ 3 \cdot2^{ \frac{1}{6} } } \:  \: ( {cos}{ \frac{\pi}{12}  }   + sin \frac{\pi}{12}  )\bigg ]}

 \sf \black{I =   \frac{\Gamma( \frac{1}{3}) \:  \: sin( \frac{\pi}{12} ) }{3  \: \cdot \:  {2}^{ \frac{1}{6} } } }

Similar questions