Math, asked by priyel, 6 months ago


 \huge{don't  \: spam}

Attachments:

Answers

Answered by Anonymous
37

\mathfrak{\bf{\underline{\underline{QUESTION</p><p> \ }}}}

 \impliesㅤㅤㅤㅤ \int  \frac{ \sqrt{(1 +  {x}^{2} )^{5}  } }{ {x}^{6} }  \\

\mathfrak{\bf{\underline{\underline{SUBSTITUTIONS \ }}}}

ㅤ \: ㅤx \:  =  \tan( \theta)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ㅤ{ \theta} =   {tan}^{ - 1}  x \\ \:  \:  \:  \:  \:  dx =  { \sec }^{2} { \theta} \: d{ \theta}

\mathfrak{\bf{\underline{\underline{SOLUTION \ }}}}

ɪ \:  =  ㅤㅤ\int \frac{ \sqrt{(1 +  { \tan }^{2} { \theta}}) ^{5}  }{ {tan}^{6} { \theta}} . \sec ^{2}  { \theta} \: d{ \theta} \\   \\ ɪ =  \int \frac{ \sqrt{(sec ^{2}{ \theta}) ^{5}  } }{ {tan}^{6}{ \theta} } . {sec}^{2}{ \theta} \: d{ \theta}  \:  \:  \:  \ \:  \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   .....(1 +  {tan}^{2}{ \theta} =  {sec}^{2} { \theta}  )

 \:  \:  \: \:   \: ɪ =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \int \frac{ \frac{1}{ \cancel {cos}^{5}{ \theta} } }{ \frac{ {sin}^{6} { \theta}}{   \cancel{cos}{}^{{6}}{ \theta} } } . {sec}^{2} { \theta} \: d{ \theta} \\

 \:ㅤ ɪ =ㅤㅤㅤㅤ  \int \frac{cos{ \theta}}{ {sin}^{6} { \theta}} . {sec}^{2} { \theta} \: d{ \theta}

ㅤɪ =ㅤㅤㅤ  \int \frac{cos{ \theta}}{ {sin}^{6}{ \theta}( {cos}^{2}  { \theta})} .d{ \theta}

 \: ɪ  =ㅤㅤㅤㅤ  \int \: \frac{cos{ \theta} \: d{ \theta}}{ {sin}^{6}{ \theta} -  {sin}^{8}{ \theta}  }

\mathfrak{\bf{\underline{\underline{SUBSTITUTION\ }}}}

ㅤㅤㅤㅤㅤㅤ \: sin{ \theta} \:  =  t \\ ㅤㅤㅤㅤㅤㅤㅤcos{ \theta} \: d{ \theta} = dt

  \: ɪ =ㅤㅤㅤㅤ  \int \:  \frac{dt}{ {t}^{6} -  {t}^{8}   }

 \: ɪ =ㅤㅤㅤㅤ\int \frac{dt}{ {t}^{6} (1 -  {t}^{2} )}

 \: ɪ  =ㅤㅤㅤㅤ \int \: \frac{(1 -  {t}^{2}) +  {t}^{2}  }{ {t}^{6}(1 -  {t}^{2}  )} .d{ \theta}

 \:ɪ = ㅤㅤㅤㅤ \int \frac{1}{ {t}^{6} }   +  \int \frac{(1 -  {t}^{2}  )+  {t}^{2} }{ {t}^{4} (1 -  {t}^{2} )}

 \: ɪ  =  \int \frac{1}{ {t}^{6} }  +  \int \frac{1}{ {t}^{4} }  +  \int \frac{(1 -  {t}^{2}) +  {t}^{2}  }{ {t}^{2}(1 -  {t}^{2}  )}  \\

 \: ɪ  =   \int  \frac{1}{ {t}^{6} } +  \int \frac{1}{ {t}^{4} }  +  \int \frac{1}{ {t}^{2} }   +  \int \frac{1}{(1 -  {t}^{2}) }  \\

 \: ɪ  =  \int {t}^{ - 6}  +  \int {t}^{ - 4}  +  \int  \frac{1}{ {t}^{2} }  +  \int \frac{1}{1 -  {t}^{2} }  \\

 \: ɪ =  \frac{ {t}^ {- 5} }{ - 5}  +  \frac{ {t}^{ - 3} }{ - 3}   -  \frac{1}{t}  +  \frac{1}{2}  log  | \frac{1 + t}{1 - t} |  + c \\

 \:ɪ  =  \frac{1}{2}  log | \frac{1 +t }{1 -t } |  -  \frac{1}{t}  -  \frac{1}{3 {t}^{3} }  -  \frac{1}{5 {t}^{5} }  + c \\

 \: ɪ  =   \frac{1}{2} log | \frac{1 + sin{ \theta}}{1 - sin{ \theta}} |  -  \frac{1}{sin{ \theta}}  -  \frac{1}{3si {n}^{3} { \theta}}  -  \frac{1}{5si {n}^{5} { \theta}}  + c \\

 \: ɪ  =  \frac{1}{2} log | | \frac{1 + sin{ \theta}}{1 - sin{ \theta}} |  -  \cosec{ \theta} -3cosec ^{3}  { \theta} - 5cosec ^{5} { \theta} + c \\

 \: ɪ =  \frac{1}{2} log | \frac{1 + sin(tan ^{ - 1} )}{ 1 - sin(tan ^{  -1} )} |  - cosec( {tan}^{ - 1} ) - 3 {cosec}^{3} ( {tan}^{ - 1)}  - 5cosec ^{5} (tan ^{ - 1} ) + c \\

Attachments:
Similar questions