The sides of a rectangular park are in the ratio 4 : 3. If its perimeter is 392 m, find
its length and breadth.
_____________________
Good Morning ✌...
Answers
Answer:
The sides of a rectangular park are in the ratio 4 : 3. If its perimeter is 392 m, find its length and breadth
\begin{gathered} \\ \\ \end{gathered}
Given :-
Length and Breadth of the Rectangle are in the ratio = 4:3
Perimeter of the Rectangle = 392m
\begin{gathered} \\ \\ \end{gathered}
To Find :-
Measures of Length and Breadth of Rectangle .
\begin{gathered} \\ \\ \end{gathered}
Solution :-
\begin{gathered} \\ \end{gathered}
Let the Length be 4x
Let the Breadth be 3x
\begin{gathered} \\ \end{gathered}
According To Question :-
\begin{gathered}\qquad \quad {:} \longrightarrow \sf\boxed{\bf{Perimeter \: = \: 2(Length \: + \: Breadth) }}\\\end{gathered}
:⟶
Perimeter=2(Length+Breadth)
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{392 \: = \: 2(\: 4x \: + \: 3x) }}\\\end{gathered}
:⟶392=2(4x+3x)
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{392 \: = \: 2\: \times \: 7x }}\\\end{gathered}
:⟶392=2×7x
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{392 \: = \: 14x }}\\\end{gathered}
:⟶392=14x
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\sf{\cancel\dfrac{392}{14} \: = \: x }}\\\end{gathered}
:⟶
14
392
=x
\begin{gathered}\qquad \quad {:} \longrightarrow \sf{\bf{28 \: = \: x }}\\\end{gathered}
:⟶28=x
━━━━━━━━━━━━━━━━━━━━━━━━━
Length = 4x = 4 × 28 = 112m
Breadth = 3x = 3 × 28 = 84m
━━━━━━━━━━━━━━━━━━━━━━━━━
\begin{gathered}\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Length \: = \underline {\underline{ 112m}}}\\\end{gathered}\end{gathered} \end{gathered}
∴Length=
112m
\begin{gathered}\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Breadth \: = \underline {\underline{ 84m}}}\\\end{gathered}\end{gathered} \end{gathered}
∴Breadth=
84m