Math, asked by Anonymous, 1 month ago


 \huge \fbox \blue{question  } :  -


 \dashrightarrow  \rm \: if \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: the
 \rm \: quadratic \: polynomial \: f(x) =  {ax}^{2}  +
 \rm + bx + c \:  \: them \: evalute :  -

 \rm \: (1) \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }
 \rm \: (2) \:  \frac{ { \alpha }^{2} }{  \beta  }  +  \frac{ { \beta }^{2} }{ \alpha }


 \rule{255mm}{2mm}
No copy

No wrong answer

Answers

Answered by mathdude500
246

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  \beta  = \dfrac{c}{a}

And

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha +   \beta  = -  \:  \dfrac{b}{a}

Consider

\rm :\longmapsto\: \dfrac{ \alpha }{ \beta } + \dfrac{ \beta }{ \alpha }

\rm \:  =  \: \dfrac{ {\alpha  }^{2} +  {\beta }^{2}  }{\alpha  \beta }

\rm \:  =  \: \dfrac{ {(\alpha   + \beta )}^{2}  - 2\alpha  \beta }{\alpha  \beta }

On substituting the values, we get

\rm \:  =  \: \bigg[ {\bigg( - \dfrac{b}{a} \bigg) }^{2}  - \dfrac{2c}{a}\bigg] \div \dfrac{c}{a}

\rm \:  =  \: \bigg[\dfrac{ {b}^{2} }{ {a}^{2} } - \dfrac{2c}{a}\bigg] \div \dfrac{c}{a}

\rm \:  =  \: \bigg[\dfrac{ {b}^{2} - 2ac}{ {a}^{2} }\bigg] \times \dfrac{a}{c}

\rm \:  =  \: \dfrac{ {b}^{2} - 2ac}{ac}

Consider,

\rm :\longmapsto\:\dfrac{ {\alpha  }^{2} }{\beta }  + \dfrac{ {\beta }^{2} }{\alpha  }

\rm \:  =  \: \dfrac{ {\alpha  }^{3} +  {\beta }^{3}  }{\alpha  \beta }

\rm \:  =  \: \dfrac{ {(\alpha   + \beta )}^{3}  - 3\alpha  \beta(\alpha   + \beta ) }{\alpha  \beta }

On substituting the values, we get

\rm \:  =  \: \bigg[ {\bigg( - \dfrac{b}{a} \bigg) }^{3} + \dfrac{3c}{a} \times \dfrac{b}{a} \bigg] \div \dfrac{c}{a}

\rm \:  =  \: \bigg[ - \dfrac{ {b}^{3} }{ {a}^{3} } + \dfrac{3bc}{ {a}^{2} }\bigg] \div \dfrac{c}{a}

\rm \:  =  \: \bigg[\dfrac{ -  {b}^{3}  + 3abc}{ {a}^{3} }\bigg] \times \dfrac{a}{c}

\rm \:  =  \: \dfrac{ -  {b}^{3} + 3abc}{c {a}^{2} }

Answered by SparklingBoy
222

Given :-

\rm \alpha \: and \: \beta \: are \: the \: zeroes \: of \: the\: quadratic

 \rm  \: polynomial \: f(x) = {ax}^{2} + bx + c

To Find :-

Values of

  •  \rm \dfrac{ \alpha }{ \beta } + \dfrac{ \beta }{ \alpha }

  •  \rm \:\dfrac{ { \alpha }^{2} }{ \beta } + \dfrac{ { \beta }^{2} }{ \alpha }

Main Concept :-

For A Quadratic Equation of the Form

ax² + bx + c =0.

\purple{ \text{Sum of Zeros} = \dfrac{ - \text b}{ \: \: \text a} }

\purple{ \text{Product of Zeros} = \dfrac{ \text c}{\text a} }

Solution :-

Here,

 \text{Sum of Zeros} =  \frac{ -\text  b}{ \:  \:  \:  \text a} \\

 \large:\longmapsto  \green{\pmb{ \alpha  +  \beta  =  \frac{ -\text b}{ \:  \:  \:\text a }}} \:  -  -  - (1) \\

And

\text{Product of Zeros} =  \frac{\text c}{\text b}  \\

 \large:\longmapsto  \green{\pmb{ \alpha \beta  =  \frac{ \text c}{\text a }}} \:  -  -  - (2) \\

Finding Value of  \pmb{\dfrac{ \alpha }{ \beta } + \dfrac{ \beta }{ \alpha }}

 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  \\

 =  \frac{ \alpha^2  +  \beta^2 }{ \alpha  \beta }  \\

Adding and Subtracting \pmb{2\alpha  \beta } \\ in Numerator :

 =  \frac{( \alpha  {}^{2}  +  { \beta }^{2}  + 2 \alpha  \beta ) - 2 \alpha  \beta }{ \alpha  \beta }  \\

 = \frac{( \alpha  +  \beta  {)}^{2}  - 2 \alpha  \beta }{ \alpha  \beta }  \\

Purtting Values from (1) and (2) :

 =  \frac{  \bigg(\dfrac{ -  \text b}{ \:  \: \text a} \bigg)^{2} - 2 \times  \dfrac{\text c}{\text a}   }{ \dfrac{\text c}{\text a} }  \\

 =  \frac{ \dfrac{ {\text b}^{2}  }{ {\text a}^{2}}  -  {\dfrac{2\text c}{\text a} } }{ \dfrac{\text c}{\text a} }  \\

 =   \dfrac{ \dfrac{ {\text b}^{2} }{\text a} - 2\text c }{\text c}  \\

 =   \frac{ {\text b}^{2} }{\text a\text c} - 2  \\

Hence,

\large\underline{\pink{\underline{\frak{\pmb{ \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }   =  \frac{ {b}^{2} }{ac} - 2}}}}} \\

--------------------------------

Finding Value of  \pmb{\dfrac{ { \alpha }^{2} }{ \beta } + \dfrac{ { \beta }^{2} }{ \alpha }}

 \frac{ \alpha  {}^{2} }{ \beta }  + \frac{ { \beta }^{2} }{ \alpha }  \\

 =  \frac{ { \alpha }^{3}  +  { \beta }^{3} }{ \alpha  \beta }  \\

⏩ Adding and Subtracting \pmb{3\alpha  \beta(\alpha+\beta) } \\ in Numerator :

 = \frac{ { \alpha }^{3}  +  { \beta }^{3} + 3 \alpha  \beta ( \alpha  +  \beta) - 3 \alpha  \beta ( \alpha  +  \beta )  }{ \alpha  \beta }  \\

 =  \frac{ { (\alpha +   \beta) }^{3}  - 3 \alpha  \beta ( \alpha  +  \beta )}{ \alpha  \beta }  \\

Purtting Values from (1) and (2) :

 = \frac{  \bigg(\dfrac{ - \text b}{ \:  \:  \: \text a} \bigg) ^{3}  - 3 \times  \dfrac{\text c}{\text a}  \times  \bigg( \dfrac{ - \text b}{\text a}  \bigg) }{ \dfrac{\text c}{\text a} }  \\

 =  \frac{ -  \dfrac{ {\text b}^{3} }{\text a {}^{3} } +  \dfrac{3\text b\text c}{ {\text a}^{2} }  }{ \dfrac{\text c}{\text a} }  \\

 =  \frac{ -  {\text b}^{3} }{ {\text a}^{2}\text c }  +  \frac{3\text b}{\text a}  \\

Hence,

\large\underline{\pink{\underline{\frak{\pmb{ \frac{ { \alpha }^{2} }{ \beta }  +  \frac{ { \beta }^{2} }{ \alpha }   =  \frac{ -  { b}^{3} }{ { a}^{2} c }  +  \frac{3 b}{a}  }}}}} \\

Similar questions