Math, asked by Anonymous, 3 days ago

\Huge \fbox{{\color{magenta}{\textsf {\textbf {Question :-}}}}}\\

Find the length of the arc x² + y² + 2ax = 0 in the second quadrant​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given equation of circle is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} + 2ax = 0

Let reduced this general equation of circle to standard form.

On rearranging can be rewritten as

\rm :\longmapsto\: ({x}^{2} + 2ax) +  {y}^{2} = 0

\rm :\longmapsto\: ({x}^{2} + 2ax +  {a}^{2} -  {a}^{2}  ) +  {y}^{2} = 0

\rm :\longmapsto\: {(x + a)}^{2} +  {y}^{2} -  {a}^{2}  = 0

\rm :\longmapsto\: {(x + a)}^{2} +  {y}^{2}  =  {a}^{2}

It implies, Center of circle = ( - a, 0 ) and radius is a units.

Now,

We have,

\rm :\longmapsto\: {(x + a)}^{2} +  {y}^{2}  =  {a}^{2}

Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}  {(x + a)}^{2} +  \dfrac{d}{dx}{y}^{2}  = \dfrac{d}{dx} {a}^{2}

\rm :\longmapsto\:2(x + a) + 2y\dfrac{dy}{dx} = 0

\rm :\longmapsto\:(x + a) + y\dfrac{dy}{dx} = 0

\bf\implies \:\dfrac{dy}{dx} \:  =  \: -  \:  \dfrac{x + a}{y}

Now,

For the length of arc of circle, in second quadrant, the values of x varies from x = - 2a to x = 0

Now, we know that

\rm :\longmapsto\:Length \: of \: arc = \displaystyle\int^{0}_{ - 2a} \sqrt{1 + {\bigg(\dfrac{dy}{dx} \bigg) }^{2} }dx

So, on substituting the value, we get

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{1 + {\bigg(\dfrac{ - (a + x)}{y} \bigg) }^{2} }dx

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{1 + {\bigg(\dfrac{a + x}{y} \bigg) }^{2} }dx

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{1 + \dfrac{ {(a + x)}^{2} }{ {y}^{2} } }dx

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{ \dfrac{  {y}^{2} +  {(a + x)}^{2} }{ {y}^{2} } }dx

\red{\bigg \{ \because \: {(x + a)  }^{2}  +  {y}^{2}  =  {a}^{2} \bigg \}}

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{ \dfrac{ {a}^{2} }{ {y}^{2} } }dx

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \sqrt{ \dfrac{ {a}^{2} }{ {a}^{2}  -  {(x + a)}^{2} } }dx

\red{\bigg \{ \because \: {(x + a) }^{2} +  {y}^{2}    =  {a}^{2} \bigg \}}

\rm \:  \:  =  \:  \: \displaystyle\int^{0}_{ - 2a} \frac{a}{ \sqrt{ {a}^{2}  -  {(x + a)}^{2} } } dx

\rm \:  =  \:a\bigg[ {sin}^{ - 1}\dfrac{a + x}{a} \bigg]^{0}_{ - 2a}

\rm \:  =  \:a\bigg[ {sin}^{ - 1}\dfrac{a + 0}{a} -  {sin}^{ - 1} \dfrac{a - 2a}{a}   \bigg]

\rm \:  =  \:a\bigg[ {sin}^{ - 1}\dfrac{a}{a} -  {sin}^{ - 1} \dfrac{- a}{a}   \bigg]

\rm \:  =  \:a\bigg[ {sin}^{ - 1}(1)  +   {sin}^{ - 1} (1) \bigg]

\rm \:  =  \:a\bigg[ 2{sin}^{ - 1}(1)  \bigg]

\rm \:  =  \:a \times 2 \times \dfrac{\pi}{2}

\rm \:  =  \:a \pi \: units.

Attachments:
Similar questions