Math, asked by tashusangeeta, 26 days ago

[tex]{\huge{\fbox{\color{purple}{Question :-}}}}
Find the amount and the compound interest on 5000 for 2 years at 6% per annum, interest payable yearly.​

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
3

 \bf \huge \mapsto \: Given:

 \bf \small \implies \: Principal  \: (P)  \: =  \: 5000

 \bf \small \implies \:Rate  \:  \: of \:  \:  interest (r)  \: =  \: 6% p.a.

 \bf \implies \: Time \:  \:  Period (n) = \:  2 \:  \:  years

_________________________________

 \bf \huge \mapsto \: To  \:  \:  Find :

Compound interest on 5000 for 2 years at 6% per annum, interest payable yearly.

_________________________________

 \bf \huge \mapsto \: Solution :

 \bf \implies \: We \:  \:  \: already \: \:   \:  Know  \:  \:  \: that 

 \bf  \large\implies \: Amount \:  = P \: (  \: \frac{1 + r}{100}  \:  )^{n}

Putting the values ,

 \bf  \large\implies \:  \:  5000  \: \: (  \: \frac{1 \:  +  \: 6}{100}  \:  ) \:^{2}

\bf  \large\implies \: 5000 \:   \:  (  \: \frac{106}{100}  \:  ) \:^{2}

\bf  \large\implies \: 5000  \times  \frac{53}{50}  \times  \frac{53}{50}  \\

\bf  \large\implies  \:  \:  5618

_________________________________

After that ,

 \bf \mapsto \: We \:  \:  know \:  \:  that ,

 \:

Compound interest = Amount - Principal

 \large \leadsto \: 5618−5000 \\  \\  \large \leadsto \: 618

Answered by Anonymous
41

Answer:

{\Large{\pmb{\sf{\underline{\underline{Given...}}}}}}

  • \leadsto Principle = Rs.5000
  • \leadsto Time = 2 years
  • \leadsto Rate of Interest = 6%

\begin{gathered}\end{gathered}

{\Large{\pmb{\sf{\underline{\underline{To  \: Find...}}}}}}

  • \leadsto Amount
  • \leadsto Compound Interest

\begin{gathered}\end{gathered}

{\Large{\pmb{\sf{\underline{\underline{Using \: Formulas...}}}}}}

\quad{\dag{\underline{\boxed{\sf{Amount ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered}\end{gathered}

{\Large{\pmb{\sf{\underline{\underline{Solution...}}}}}}

{\bigstar \:{\underline{\pmb{\frak{\green{Firstly, calculating\: the \: Amount }}}}}}

\quad {\longmapsto{\sf{Amount = {P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {\longmapsto{\sf{Amount = {5000{\bigg(1 + \dfrac{6}{100}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{(1 \times 100) + 6}{100}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{100 + 6}{100}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{106}{100}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg({\cancel{\dfrac{106}{100}}}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{53}{50}{\bigg)}^{2}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{53}{50} \times \dfrac{53}{50}{\bigg)}}}}}}

\quad {\longmapsto{\sf{Amount = {5000{\bigg(\dfrac{2809}{2500}{\bigg)}}}}}}

\quad {\longmapsto{\sf{Amount = {5000 \times \dfrac{2809}{2500}}}}}

\quad {\longmapsto{\sf{Amount =  {\cancel{5000} \times \dfrac{2809}{\cancel{2500}}}}}}

\quad {\longmapsto{\sf{Amount = {2 \times {2809}}}}}

\quad {\longmapsto{\sf{Amount = {Rs.5618}}}}

\quad{\dag{\underline{\boxed{\sf{\pink{Amount = {Rs.5618}}}}}}}

\therefore{\sf{\underline{\underline{\red{The \:  Amount \:  is \:  Rs.5618}}}}}

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\green{Now,Finding  \: the  \: Compound  \: Interest}}}}}}

\quad{ \longmapsto{\sf{Compound \: Interest = {Amount - Principle }}}}

  • Substituting the values

\quad{ \longmapsto{\sf{Compound \: Interest = {5681 - 5000}}}}

\quad{ \longmapsto{\sf{Compound \: Interest = {Rs.618}}}}

\quad{\dag{\underline{\boxed{\sf{\pink{Compound \: Interest = {Rs.618}}}}}}}

\therefore{\sf{\underline{\underline{\red{The \:  Compound  \: Interest \:  is \:  Rs.618}}}}}

\begin{gathered}\end{gathered}

{\Large{\pmb{\sf{\underline{\underline{Learn \:  More...}}}}}}

\quad\circ{\underline{\boxed{\sf{\blue{A ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\quad\circ{\underline{\boxed{\sf{\blue{Amount = Principle + Interest}}}}}

\quad\circ{\underline{\boxed{\sf{\blue{ P=Amount - Interest }}}}}

\quad\circ{\underline{\boxed{\sf{\blue{ S.I = \dfrac{P \times R \times T}{100}}}}}}

\quad\circ{\underline{\boxed{\sf{\blue{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\quad\circ{\underline{\boxed{\sf{\blue{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

Similar questions