Math, asked by Anonymous, 3 months ago

\Huge\fbox{\color{red}{Questions}}

 \sf \: if \:  \frac{ {x}^{2}  +  {y}^{2} }{ {x}^{2} -  {y}^{2}  }  =  \frac{17}{8} \: then \: the \: value \: x:y \:  \: is

Answers

Answered by Anonymous
2

Step-by-step explanation:

 \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2}  -  {y}^{2} }  =  \frac{17}{8}  \\  \\  =  >  \frac{ {x}^{2} +  {y}^{2} +  {x}^{2}  -  {y}^{2}   }{ {x}^{2}  +  {y}^{2}  - ( {x}^{2} -  {y}^{2}  ) }  =  \frac{17 + 8}{17 - 8}  \\  \\  =  >   \frac{ {x}^{2} +  {y}^{2}  +  {x}^{2}  -  {y}^{2}  }{ {x}^{2}  +  {y}^{2}  -  {x}^{2} +  {y}^{2}  }  =  \frac{25}{9}  \\  \\  =  >  \frac{2 {x}^{2} }{2 {y}^{2} }  =  \frac{25}{9}   \\  \\  =  >  \frac{ {x}^{2} }{ {y}^{2} }  =  \frac{25}{9}  \\  \\  =  >  \frac{x}{y}  =  \sqrt{ \frac{25}{9} }  \\  \\  =  >  \frac{x}{y}  =  \frac{5}{3}

x/y = 5/3

=> x : y = 5 : 3

Answered by Anonymous
84

\rm{Answer}

5 : 4 is the answer!!

★Given

 => \sf \: \frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = \frac{17}{8}

On applying componendo and dividendo, we get

 \sf \: ⇒\frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = \frac{17}{8}

 \sf =  >   \frac{( {x}^{2} +  {y}^{2})( {x}^{2} -  {y}^{2} )   }{ ({x}^{2} +  {y}^{2} ) - ( {x}^{2}   -  {y}^{2}) }  =  \frac{17 + 8}{17 - 8}  \\

 \sf \:  :  \: =   >  \frac{2 {x}^{2} }{2 {y}^{2} }  =  \frac{25}{9}  \\

 \sf :  =  >  \frac{ {x}^{2} }{ {y}^{2} }  =     {\frac{5}{3} }^{2}  \\

On taking square root both sides, we get

 =  \frac{x}{y}  =  \frac{5}{3}  \\

\text{⇒ ∴  x : y = 5 : 3}

The answer is 5 : 3

 \pink{\boxed{\blue{\boxed{{{{\mathfrak{More~ information }}}}}}}}

What is algebric expression?

In mathematics, an algebraic expression is an expression made up from integer constants, variables, and the algebraic operations, addition, subtraction, multiplication, division etc

EXAMPLE = \sf {x}^{2}

Similar questions