Find The Capacity In Litres Of Conical Vessel With
》Height 12cm
》Slant Height 13cm
..________________________..
Answers
Answer:
1.
0.1257r^2 liters.
2.
0.314 liters.
Step-by-step explanation:
1.
Taking radius as: r.
Height given: 12 cm
→0.012 liters
Volume of Cone:
1/3(22/7)r^2(0.012)
(0.088/7)r^2
0.01257r^2
Hence, the volume of the cone is 0.01257r^2.
2.
Slanting Height given: 13cm.
Using Pythagoras Theorum,
Base: 5cm
Altitude: 12cm
Volume of Cone:
2200/7
→314.285 cm.
→0.314 liters.
Hence, the volume of the cone is 0.314 liters.
Hope it helped you...
Kindly Mark as Brainliest...
Step-by-step explanation:
Answer:
1.
0.1257r^2 liters.
2.
0.314 liters.
Step-by-step explanation:
1.
Taking radius as: r.
Height given: 12 cm
→0.012 liters
Volume of Cone:
\frac{1}{3} \pi {r}^{2} h
3
1
πr
2
h
1/3(22/7)r^2(0.012)
(0.088/7)r^2
0.01257r^2
Hence, the volume of the cone is 0.01257r^2.
2.
Slanting Height given: 13cm.
Using Pythagoras Theorum,
{h}^{2} = {p}^{2} + {b}^{2}h
2
=p
2
+b
2
{13}^{2} = {p}^{2} + {b}^{2}13
2
=p
2
+b
2
169 = {p }^{2} + {b}^{2}169=p
2
+b
2
169 = 144 + 25169=144+25
169 = {12}^{2} + {5}^{2}169=12
2
+5
2
{13}^{2} = {12}^{2} + {5}^{2}13
2
=12
2
+5
2
Base: 5cm
Altitude: 12cm
Volume of Cone:
\frac{1}{3} \pi {r}^{2} h
3
1
πr
2
h
\frac{1}{3} \times \frac{22}{7} \times {5}^{2} \times 12
3
1
×
7
22
×5
2
×12
\frac{22}{7} \times 25 \times 4
7
22
×25×4
2200/7
→314.285 cm.
→0.314 liters.
Hence, the volume of the cone is 0.314 liters.
Hope it helped you...
Kindly Mark as Brainliest...