Math, asked by ʙʀᴀɪɴʟʏᴡɪᴛᴄh, 1 year ago

\huge{\fbox{\fbox{\bigstar{\mathfrak{\blue{Answer}}}}}}

Find The Capacity In Litres Of Conical Vessel With
》Height 12cm
》Slant Height 13cm

..________________________..
<marquee>✝︎No Spam✝︎  No Wrong Answer✝︎<marquee>

Answers

Answered by omprakashmalviya2000
4

Answer:

1.

0.1257r^2 liters.

2.

0.314 liters.

Step-by-step explanation:

1.

Taking radius as: r.

Height given: 12 cm

→0.012 liters

Volume of Cone:

 \frac{1}{3} \pi {r}^{2} h

1/3(22/7)r^2(0.012)

(0.088/7)r^2

0.01257r^2

Hence, the volume of the cone is 0.01257r^2.

2.

Slanting Height given: 13cm.

Using Pythagoras Theorum,

 {h}^{2}  =   {p}^{2}  +   {b}^{2}

 {13}^{2}  =  {p}^{2}  +  {b}^{2}

169 =  {p }^{2}  +  {b}^{2}

169 = 144 + 25

169 =  {12}^{2}  +  {5}^{2}

 {13}^{2}  =  {12}^{2}  +  {5}^{2}

Base: 5cm

Altitude: 12cm

Volume of Cone:

 \frac{1}{3} \pi {r}^{2} h

 \frac{1}{3}  \times  \frac{22}{7}  \times  {5}^{2}  \times 12

 \frac{22}{7}  \times 25 \times 4

2200/7

→314.285 cm.

→0.314 liters.

Hence, the volume of the cone is 0.314 liters.

Hope it helped you...

Kindly Mark as Brainliest...

Answered by DynamicPlayer
1

Step-by-step explanation:

Answer:

1.

0.1257r^2 liters.

2.

0.314 liters.

Step-by-step explanation:

1.

Taking radius as: r.

Height given: 12 cm

→0.012 liters

Volume of Cone:

\frac{1}{3} \pi {r}^{2} h

3

1

πr

2

h

1/3(22/7)r^2(0.012)

(0.088/7)r^2

0.01257r^2

Hence, the volume of the cone is 0.01257r^2.

2.

Slanting Height given: 13cm.

Using Pythagoras Theorum,

{h}^{2} = {p}^{2} + {b}^{2}h

2

=p

2

+b

2

{13}^{2} = {p}^{2} + {b}^{2}13

2

=p

2

+b

2

169 = {p }^{2} + {b}^{2}169=p

2

+b

2

169 = 144 + 25169=144+25

169 = {12}^{2} + {5}^{2}169=12

2

+5

2

{13}^{2} = {12}^{2} + {5}^{2}13

2

=12

2

+5

2

Base: 5cm

Altitude: 12cm

Volume of Cone:

\frac{1}{3} \pi {r}^{2} h

3

1

πr

2

h

\frac{1}{3} \times \frac{22}{7} \times {5}^{2} \times 12

3

1

×

7

22

×5

2

×12

\frac{22}{7} \times 25 \times 4

7

22

×25×4

2200/7

→314.285 cm.

→0.314 liters.

Hence, the volume of the cone is 0.314 liters.

Hope it helped you...

Kindly Mark as Brainliest...

Similar questions