Math, asked by NewBornTigerYT, 11 months ago

\huge{\fbox{\fbox{\blue{\mathfrak{Answer\:Please}}}}}

\huge\purple{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{Explanation\:Required}}}}}}}

\huge{\fbox{\orange{\mathfrak{No\:Spam}}}}

If you felt it easy then plz answer my questions by checking out my profile​

Attachments:

Answers

Answered by rishu6845
35

Answer:

 \dfrac{4}{ \sqrt{3} } \:   {tan}^{ - 1} ( \dfrac{tan \dfrac{x}{2} }{ \sqrt{3} } ) +  log(2 + cosx)  + c

Step-by-step explanation:

\bold{Solution}\longrightarrow \\  I = \displaystyle\int \dfrac{2 - sinx}{2 + cosx}  \: dx \\  =  \displaystyle\int\dfrac{2}{2 + cosx}  \: dx - \displaystyle\int \dfrac{sinx}{2 + cosx} dx \\ I = I(1) - I(2)..........(1) \\ now \\ I(1) =  \displaystyle\int\dfrac{2}{2 + cosx} dx \\  = \displaystyle\int \dfrac{2}{2 +  \dfrac{1 -  {tan}^{2} \dfrac{x}{2}  }{1 +  {tan}^{2} \dfrac{x}{2}  } } \:  dx \\  = \displaystyle\int \dfrac{2}{ \dfrac{2 + 2 {tan}^{2} \dfrac{x}{2} + 1 -  {tan}^{2} \dfrac{x}{2}    }{1 +  {tan}^{2} \dfrac{x}{2}  } }  \: dx \\  =  \displaystyle\int\dfrac{2(1 +  {tan}^{2} \dfrac{x}{2} ) }{3 +  {tan}^{2} \dfrac{x}{2}  } \:  dx \\  =\displaystyle\int  \dfrac{2 {sec}^{2}  \dfrac{x}{2} }{3 +  {tan}^{2} \dfrac{x}{2}  } \:  dx \\ now \\ let \:  \: tan \dfrac{x}{2}  = t \\ differentiating \: with \: repect \: to \: x \\  {sec}^{2}  \dfrac{x}{2} ( \dfrac{1}{2} ) \: dx = dt \\  {sec}^{2}  \dfrac{x}{2}  \: dx = 2 \: dt \\ I(1) = \displaystyle\int \dfrac{2}{3 +  {t}^{2} }  \:  \: 2dt \\  = \displaystyle\int \dfrac{4 \: dt}{ {( \sqrt{3}) }^{2}  +  {t}^{2} }  \\  = 4 \dfrac{1}{ \sqrt{3} }  {tan}^{ - 1} ( \dfrac{t}{ \sqrt{3} } ) + c \\ I(1) =  \dfrac{4}{ \sqrt{3} }  {tan}^{ - 1} ( \dfrac{tan  \dfrac{x}{2}  }{ \sqrt{3} } )

now

I(2) = \displaystyle\int \dfrac{sinx}{2 + cosx} dx \\ let  \\ 2 + cosx = u \\ differentiating \: both \: sides \\ (0 - sinx)dx = du \\ sinx \: dx =  - du \\ I(2) =  \displaystyle\int \dfrac{ - du}{u}  \\  =  - logu \\  =  - log(2 + cosx)

now \\ I = I(1)  -  I(2) \\ I =  \dfrac{4}{ \sqrt{3} }  {tan}^{ - 1} ( \dfrac{tan \dfrac{x}{2} }{ \sqrt{3} } )  +   log(2 + cosx)  + c

Similar questions