Math, asked by NewBornTigerYT, 11 months ago

\huge{\fbox{\fbox{\orange{\mathfrak{Explanation\:Required}}}}}

Solve the above equation.​

Attachments:

Answers

Answered by Anonymous
136

Solution :

 \mathrm{  log_{1/3}9 \sqrt{3} }

It can be written as

 \mathrm{   = log_{1/( \sqrt{3} ) ^{2} }3^{2} \sqrt{3} }

 \mathrm{   = log_{1/( \sqrt{3} ) ^{2} }  \big( (\sqrt{3}) ^{2} \big)  ^{2} \sqrt{3} }

Using ( a^m )^n = a^( mn ) we get,

 \mathrm{   = log_{1/( \sqrt{3} ) ^{2} }   (\sqrt{3})  ^{4} \sqrt{3} }

Using a^m × a^n = a^( m + n ) we get,

 \mathrm{   = log_{1/( \sqrt{3} ) ^{2} }   (\sqrt{3})  ^{5} }

Using 1 / a^m = a^( - m ) we get,

 \mathrm{   = log_{( \sqrt{3} ) ^{ - 2} }   (\sqrt{3})  ^{5} }

 \text{Using } \sf  log_{a^m }n =  \dfrac{1}{m}   log_{a}n

 \mathrm{   = -  \dfrac{1}{2}  log_{ \sqrt{3}  }   (\sqrt{3})  ^{5} }

Using Power rule - log a^m = m.log a we get,

 \mathrm{   = -  \dfrac{1}{2} ( 5 \times log_{ \sqrt{3}  } \sqrt{3}})

 \mathrm{   = -  \dfrac{5}{2} log_{ \sqrt{3}  } \sqrt{3}}

Using log_a a = 1 we get,

 \mathrm{   = -  \dfrac{5}{2} \times 1}

 \mathrm{   = -  \dfrac{5}{2}}

Therefore the value of the given expression is - 5 / 2.


CaptainBrainly: Great! :smirk:
Anonymous: Thanks :fb_wow:
Answered by Anonymous
91

Answer:

\large\boxed{\sf{-\dfrac{5}{2}}}

Step-by-step explanation:

To find the value of,

 log_{ \frac{1}{3} }(9 \sqrt{3} )

Let the required value be 'x'

Therefore, we have the equation,

 =  >  log_{ \frac{1}{3} }(9 \sqrt{3} )  = x

But, we know that,

If,

  •  log_{x}(y)  = m

Then,

  •  y = {x}^{m}

Therefore, we will get,

 =  >  {( \dfrac{1}{3}) }^{x}  = 9 \sqrt{3}

But, we know that,

  •  {y}^{ - m}  =   {( \dfrac{1}{y} )}^{m}

Therefore, we will get,

 =  >  {3}^{ - x}  = 9 \sqrt{3}  \\  \\  =  >  {3}^{ - x}  =  {3}^{2}  \times  {3}^{ \frac{1}{2} }

But, we know that,

  •  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

Therefore, we will get,

 =  >  {3}^{ - x}  =  {3}^{(2 +  \frac{1}{2}) }  \\  \\  =  >  {3}^{ - x}  =  {3}^{ \frac{5}{2} }

Now, comparing the both sides, we observed that bases are same i.e., 3

Therefore, powers / exponent will also be same

Therefore, we will get,

 =  >  - x =  \dfrac{5}{2}  \\  \\  =  > x =  -  \dfrac{5}{2}

Hence, the required value is -5/2.

Similar questions