Math, asked by NewBornTigerYT, 11 months ago

\huge{\fbox{\fbox{\orange{\mathfrak{Explanation\:required}}}}}

Attachments:

Answers

Answered by ItzAditt007
8

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr..}}}}}}}}}

\large{\fbox{\fbox{\orange{\mathbb{\bold{ANSWER\:1.}}}}}}

Hope this will help you if it HELPS then plz mark my answer as BRAINLIEST.

And remember to always keep a smile on face:D

 <marquee \: behaviour = alternate><font \: color =red>✌✌THANKS✌✌

Attachments:
Answered by vikram991
33

Given,

  • \sf{x^{2} - 2ax + a^{2} = 0}

To Find,

  • \sf{The \ Value \ of \ \dfrac{x}{a}}

Solution :

║In this Question the We use the Algebraic Identities of Square ║

→Use Identity - (a - b)² = a² + b² - 2ab

Therefore,

\implies \sf{x^{2} - 2ax + a^{2} =0}

\implies \sf{(x - a)^{2} = 0}

\implies \sf{x - a = \sqrt{0} }

\implies \sf{x - a = 0}

\implies \sf{x = a}

\implies \boxed{\sf{\dfrac{x}{a} = 1}}

Here Value of x/a = 1 Because If the value (x = a) upper side also prove then a/a = 1 or x/x = 1 So x/a = 1

\rule{200}2

\underline{\boxed{\bold{\pink{Other \ Identities:}}}}

\implies \sf{a^{2} + b^{2} = (a + b) - 2ab}

\implies \sf{a^{2} + b^{2} = (a-b) + 2ab}

\implies \sf{(a + b)^{3} = a^{3} + b^{3} + 3ab(a + b)}

\implies \sf{a^{3} + b^{3} = (a + b) (a^{2} + b^{2} - ab)}

\implies \sf{ a^{3} + b^{3} + c^{3} -3abc = (a+b+c)(a^{2} + b^{2}+ c^{2}- ab - bc - ca)}

\rule{200}1

Similar questions