Math, asked by Anonymous, 4 months ago


\huge \fbox \red{H} \fbox \green{e} \huge \fbox \blue{l}  \huge\fbox \orange{l} \fbox \green{o}


ᴛʜᴇ ᴅᴇɴᴏᴍIɴᴀᴛᴏʀ ᴏғ ᴀ ғʀᴀᴄᴛIᴏɴ Is ɢʀᴇᴀᴛᴇʀ ᴛʜᴀɴ Iᴛs ɴᴜᴍᴇʀᴀᴛᴏʀ ʙʏ 12. Iғ ᴛʜᴇ ɴᴜᴍᴇʀᴀᴛᴏʀ Is ᴅᴇᴄʀᴇᴀsᴇᴅ ʙʏ 2 ᴀɴᴅ ᴛʜᴇ ᴅᴇɴᴏᴍIɴᴀᴛᴏʀ Is Iɴᴄʀᴇᴀsᴇᴅ ʙʏ 7, ᴛʜᴇ ɴᴇᴡ ғʀᴀᴄᴛIᴏɴ Is ᴇǫᴜIᴠᴀʟᴇɴᴛ ᴡIᴛʜ 1/2. ғIɴᴅ ᴛʜᴇ ғʀᴀᴄᴛIᴏɴ.




# ᴀʟʟ ᴛʜᴇ ʙᴇsᴛ
# ᴛʜɴᴋ ᴜ ​

Answers

Answered by Anonymous
23

Given:

  • The denominator of a fraction is greater than its numerator by 12.
  • the numerator is decreased by 2 and the denominator is increased by 7.
  • The new fraction is equivalent to ½

 \\ \\

To find:

  • The original fraction

 \\ \\

Solution:

Now,

  • Let the numerator be x

➷As the numerator greater that the denominator by 12

  • let the denominator be x + 12

hence the fraction is,

 \longrightarrow \tt \:  \dfrac{x}{x + 12}

» Now , as the number is decreased by 2

  • the new numerator is x - 2

» And as the denominator is increased by 7

  • so, the denominator is x + 12 +7
  • x +19

From the given condition:

{ : \implies} \tt  \frac{x  - 2}{x +19 }  =  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \tt \: 2(x - 2) = 1(x + 19) \\  \\  \\ { : \implies} \tt \: 2x - 4 = x + 19 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\{ : \implies} \tt \: 2x  - x = 19 + 4  \:  \: \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \tt \: x = 23 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence the numerator of the fraction is 23

 \\

  • The denominator is 23 + 12

 \\

hence , the denominator is 35

 \\

Verification:

  • Now , let's substitute the values and performe the given condition check weather they equal 1/2

  \longrightarrow \tt \: \frac{23 - 2}{35 + 9}  \\  \\  \\  \longrightarrow \tt \:   \cancel\frac{22}{44}  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \longrightarrow \tt \:  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:

{ \blue {\huge{ \sf{\underline{ hence \: verified \dag}}}}}

Answered by singhshubhamkr10
0

Answer:

Given:

The denominator of a fraction is greater than its numerator by 12.

the numerator is decreased by 2 and the denominator is increased by 7.

The new fraction is equivalent to ½

\begin{gathered} \\ \\ \end{gathered}

To find:

The original fraction

\begin{gathered} \\ \\ \end{gathered}

Solution:

Now,

Let the numerator be x

➷As the numerator greater that the denominator by 12

let the denominator be x + 12

hence the fraction is,

\longrightarrow \tt \: \dfrac{x}{x + 12}⟶

x+12

x

» Now , as the number is decreased by 2

the new numerator is x - 2

» And as the denominator is increased by 7

so, the denominator is x + 12 +7

x +19

From the given condition:

\begin{gathered}{ : \implies} \tt \frac{x - 2}{x +19 } = \frac{1}{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \tt \: 2(x - 2) = 1(x + 19) \\ \\ \\ { : \implies} \tt \: 2x - 4 = x + 19 \: \: \: \: \: \: \: \: \\ \\ \\{ : \implies} \tt \: 2x - x = 19 + 4 \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \tt \: x = 23 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

:⟹

x+19

x−2

=

2

1

:⟹2(x−2)=1(x+19)

:⟹2x−4=x+19

:⟹2x−x=19+4

:⟹x=23

❶ hence the numerator of the fraction is 23

\begin{gathered} \\ \end{gathered}

The denominator is 23 + 12

\begin{gathered} \\ \end{gathered}

❷ hence , the denominator is 35

\begin{gathered} \\ \end{gathered}

Verification:

Now , let's substitute the values and performe the given condition check weather they equal 1/2

\begin{gathered} \longrightarrow \tt \: \frac{23 - 2}{35 + 9} \\ \\ \\ \longrightarrow \tt \: \cancel\frac{22}{44} \: \: \: \: \: \: \: \\ \\ \\ \longrightarrow \tt \: \frac{1}{2} \: \: \: \: \: \: \: \: \: \end{gathered}

35+9

23−2

44

22

2

1

Similar questions