Math, asked by Braɪnlyємρєяσя, 3 months ago

\huge \fbox \red{❥ Question}

Find two consecutive positive integers, sum of whose squares is 365.​

Answers

Answered by Anonymous
17

{\huge{\rm{\underline{\underline{Question:-}}}}}

→ Find two consecutive positive integers, sum of whose squares is 365.​

{\huge{\rm{\underline{\underline{Solution:-}}}}}

→ Let the first consecutive integer be ( x )

  second integer will be ( x + 1 )

→ According to the question !!

\sf \longrightarrow x^{2}  + (x+1)^{2} = 365\\\\\longrightarrow x^{2}  + x^{2}  + 2x + 1 = 365\\\\\longrightarrow  x^{2} + 2x - 364 = 0 \\\\\longrightarrow x^{2}  + x - 182 = 0 \\\\Let\;us\;split\;the\;middle\;term\\\\\longrightarrow x^{2} + 14x - 13x -182 = 0 \\\\\longrightarrow  x(x+14) - 13(x+14) = 0 \\\\\longrightarrow (x+14)(x-13) = 0 \\\\x = -14 \;, \; x = 13 \\\\( negative\;root\;being\;rejected)\\\\

{\huge{\rm{\underline{\underline{Hence,\;required\;numbers\;are\;13\;and\;14}}}}}

___________

All Done !! :D

Similar questions