Math, asked by Braɪnlyємρєяσя, 5 months ago

\huge \fbox \red{❥ Question}

In the given figure, PS/SQ = PT/TR and ∠ PST = ∠ PRQ. Prove that PQR is an isosceles triangle.
✳️ give proper answer brainlian..​

Answers

Answered by ItzMissWitch
2

Question:

In the given figure, PS/SQ = PT/TR and ∠ PST = ∠ PRQ. Prove that PQR is an isosceles triangle.

Answer:

We have,

SQ

PS = TR

PT⇒ ST∣∣QR [By using the converse of Basic Proportionality Theorem]

⇒ ∠PST=∠PQR [Corresponding angles]

⇒ ∠PRQ=∠PQR [∵∠PST=∠PRQ (Given)]

⇒ PQ=PR [∵ Sides opposite to equal angles are equal]

⇒ △PQR is isosceles.ANSWER

We have,

SQPS

= TRPP

⇒ ST∣∣QR [By using the converse of Basic Proportionality Theorem]

⇒ ∠PST=∠PQR [Corresponding angles]

⇒ ∠PRQ=∠PQR [∵∠PST=∠PRQ (Given)]

⇒ PQ=PR [∵ Sides opposite to equal angles are equal]

⇒ △PQR is isosceles..

Not Sure About this answer...

Answered by sreekarreddy91
5

Given :-

\bf \frac{PS} {SQ} = \frac{PT} {TR}

 \bf∠  \:  PST = ∠  \: PRQ

To prove :-

PQR is an isosceles triangles

Proof :-

\bf Given \:  \frac{PS} {SQ} = \frac{PT} {TR}

 \bf\therefore \: ST ∣∣ QR

\bf \bf \ \boxed  { \bf(If \:  a \:  line  \: divides \:  any \:  two  \: sides  \: of  \: a \:  triangles  \: in \:  the \:  same \:  ratio, then  \: the \:  line  \: is \:  parallel  \: to \:  the \:  third  \: side) }

\bf Since \:  \:  ST ∣∣ QR,

\bf\angle \:  PST = \angle  \: PQR  \:  \:  \:  \: (Corresponding angles) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ...(1)

Also,

\bf  Given \:  \angle \: PST = \angle \: PRQ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:...(2)

From (1) and (2)

\bf \angle\:PQR = \angle\: PRQ

(Sides apposite to equal angles are equal)

PR = PQ

Therefore, two sides of △ PQR is equal PQR is an isosceles triangle

Hence proved ✓✓✓

Similar questions