Biology, asked by Braɪnlyємρєяσя, 4 months ago

\huge \fbox \red{❥ Question}

Show that ΔABC, where A(-2,0), B(2,0), C(0,2) and ΔPQR where P(-4,0), Q(4,0), R(0,4) are similar triangles.​

Answers

Answered by priyadarsini33
3

Answer:

\huge \fbox \red{❥ Question}

Show that ΔABC, where A(-2,0), B(2,0), C(0,2) and ΔPQR where P(-4,0), Q(4,0), R(0,4) are similar triangles.

\huge \fbox \red{❥ Answer}

hope it will help you buddy

Attachments:
Answered by Anonymous
6

Explanation:

In △ABC,

AB=(x2−x1)2+(y2−y1)2

       =(2−(−2))2+(0−0)2

       =(2+2)2

       =(4)2

       =4units

∴  AB=4units

Similarly, BC=(0−2)2+(2−0)2

                       =(2)2+(2)2

                       =4+4

                       =8

                       =22units

Similarly, AC=(−2−0)2+(0−2)2

                        =4+4=8

                       =22units

Similarly, AC=(−2−0)2+(0−2)2

                        =4+4

                        =22units

In △PQR$$,

PQ=(x2−x1)2+(y2−y1)2

         =(4−(−4))2+(0−0)2

         =(4+4)2

         =(8)2

         =8units

Similarly, QR=(0−4)2+(4−0)2

                        =(4)2+(4)2

                      =16+16

                        =32

                        =42units

Similarly,  PR=(4)2+(4)2

                         =16+16

                         =32

                         =42units

Now as pe BPT,

⇒  

 \frac{a}{pq} =  \frac{ac}{pr} =  \frac{bc}{qr}

  \frac{4}{8} =  \frac{2 \sqrt{2} }{4 \sqrt{2} } =  \frac{2 \sqrt{2} }{4 \sqrt{2} }

⇒ 

 \frac{1}{2} =  \frac{1}{2}   =  \frac{1}{2}

∴ △ABC∼△PQR ---- Hence proved

Similar questions