Show that ΔABC, where A(-2,0), B(2,0), C(0,2) and ΔPQR where P(-4,0), Q(4,0), R(0,4) are similar triangles.
Answers
Answer:
Show that ΔABC, where A(-2,0), B(2,0), C(0,2) and ΔPQR where P(-4,0), Q(4,0), R(0,4) are similar triangles.
hope it will help you buddy
Explanation:
In △ABC,
AB=(x2−x1)2+(y2−y1)2
=(2−(−2))2+(0−0)2
=(2+2)2
=(4)2
=4units
∴ AB=4units
Similarly, BC=(0−2)2+(2−0)2
=(2)2+(2)2
=4+4
=8
=22units
Similarly, AC=(−2−0)2+(0−2)2
=4+4=8
=22units
Similarly, AC=(−2−0)2+(0−2)2
=4+4
=22units
In △PQR$$,
PQ=(x2−x1)2+(y2−y1)2
=(4−(−4))2+(0−0)2
=(4+4)2
=(8)2
=8units
Similarly, QR=(0−4)2+(4−0)2
=(4)2+(4)2
=16+16
=32
=42units
Similarly, PR=(4)2+(4)2
=16+16
=32
=42units
Now as pe BPT,
⇒
⇒
∴ △ABC∼△PQR ---- Hence proved