Show that :
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
Answers
Answered by
102
Answer:
Step-by-step explanation:
ANSWER:-
Given That:-
- tan 48° tan 23° tan 42° tan 67°
- cos 38° cos 52° – sin 38° sin 52°
Concept:-
Trigonometry and its applications
Let's Do!
We need to know that:-
So, we can write tan 48 and tan 23 as:-
So, as they are complementary, they get cancelled, and hence the answer is 1.
Hence Proved!
Now, we need to know that:-
So, we can write sin 38° sin 52° as :-
cos 38° cos 52° – cos 38° cos 52° = 0
Hence Proved!
Answered by
2
☆ ANSWER ☆:-
(i) tan 48° tan 23° tan 42° tan 67° = 1
LHS = tan 48° tan 23° tan 42° tan 67°
= tan 48° × tan 23° × tan (90 – 48).tan (90 – 23)
= tan 48° × tan 23° × cot 48° × cot 23° = 1
∴ LHS = RHS
(ii) cos 38° cos 52° – sin 38° sin 52° = 0
LHS = cos38° cos 52° – sin 38° sin 52°
= cos 38° × cos (90 – 38) – sin 38° × sin (90 – 38)
= cos 38° × sin 38° – sin 38° × cos 38°
= 0.
- I Hope it's Helpful Ayan.
Similar questions