Math, asked by Anonymous, 4 months ago


{\huge{\fcolorbox{aqua}{navy}{\fcolorbox{yellow}{purple}{\bf{\color{yellow}{Question}}}}}}
ABC is a right angled ∆.Find the area of shaded region if AB=6cm, BC=10 cm and l is centre of incircle of ∆ABC.


________________________


 \sf \red{ \huge Note:-}
❝If you post irrelevant or wrong answer your 50 answers will be reported.❞​

Attachments:

Answers

Answered by IdyllicAurora
35

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the concept of Pythagoras Theorem, Area of Circle and Area of Triangle has been used We are given that ABC is a right angled triangle. So first we will find the third side of this triangle. After that, we will find the area of the Triangle. We know that area of bigger triangle is equal to sum of areas of all triangles Inscribing it. So using that we will find the radius of circle and then find the area of shaded region.

Let's do it

______________________________________

Equations Used :-

\\\;\boxed{\sf{\green{(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}}}

\\\;\boxed{\sf{\green{Area\;of\;Triangle\;=\;\bf{\dfrac{1}{2}\;\times\;Base\;\times\;Height}}}}

\\\;\boxed{\sf{\green{Area\;of\;Circle\;=\;\bf{\pi r^{2}}}}}

______________________________________

Solution :-

Given (from figure),

» AB = 6 cm

» BC = 10 cm

» BAC = 90° (since triangle is right angled)

» Radius of Circle = Pl = Ql = Rl = r

» Centre of Circle = l

______________________________________

~ For length of AC ::

We know that ABC is right angled. Thus,

  • Height = AB = 6 cm
  • Hypotenuse = BC = 10 cm
  • Base = AC

By using Pythagoras Theorem here, we get

\\\;\;\sf{:\rightarrow\;\;(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}

\\\;\;\sf{:\rightarrow\;\;(BC)^{2}\;=\;\bf{(AC)^{2}\;+\;(AB)^{2}}}

\\\;\;\sf{:\rightarrow\;\;(AC)^{2}\;=\;\bf{(BC)^{2}\;-\;(AB)^{2}}}

\\\;\;\sf{:\rightarrow\;\;(AC)^{2}\;=\;\bf{(10)^{2}\;-\;(6)^{2}}}

\\\;\;\sf{:\rightarrow\;\;(AC)^{2}\;=\;\bf{100\;-\;36}}

\\\;\;\sf{:\rightarrow\;\;(AC)^{2}\;=\;\bf{64}}

\\\;\;\sf{:\rightarrow\;\;(AC)\;=\;\bf{\sqrt{64}}}

\\\;\;\underline{\bf{:\rightarrow\;\;AC\;=\;\bf{8\;\;cm}}}

______________________________________

~ For Area of ABC ::

\\\;\;\sf{:\rightarrow\;\;Area\;of\;Triangle\;=\;\bf{\dfrac{1}{2}\;\times\;Base\;\times\;Height}}

\\\;\;\sf{:\rightarrow\;\;Area\;of\;\Delta\:ABC\;=\;\bf{\dfrac{1}{2}\;\times\;8\;\times\;6}}

\\\;\;\underline{\bf{:\rightarrow\;\;Area\;of\;\Delta\:ABC\;=\;\bf{24\;\;cm^{2}}}}

______________________________________

~ For the value of r (radius of circle) ::

From figure, we see that ClB , ClA and AlB are in the triangle ABC which completely inscribe it. Thus,

Ar.(ABC) = Ar.(CIB) + Ar.(CIA) + Ar.(AIB)

Also we see that,

In CIB -

  • Base = BC = 10 cm
  • Height = Pl = r

In AIC -

  • Base = AC = 8 cm
  • Height = Ql = r

In AIB -

  • Base = AB = 6 cm
  • Height = Rl = r

By applying these values, we get,

\\\sf{:\Longrightarrow\;Ar.(\Delta\:ABC)\:=\:\bf{\bigg(\dfrac{1}{2}\:\times\:10\:\times\:r\bigg)\:+\:\bigg(\dfrac{1}{2}\:\times\:8\:\times\:r\bigg)\:+\:\bigg(\dfrac{1}{2}\:\times\:6\:\times\:r\bigg)}}

\\\;\sf{:\Longrightarrow\;\;24\;=\;\bf{5r\;+\;4r\;+\;3r}}

\\\;\sf{:\Longrightarrow\;\;12\:r\;=\;\bf{24}}

\\\;\sf{:\Longrightarrow\;\;r\;=\;\bf{\dfrac{24}{12}}}

\\\;\underline{\bf{:\Longrightarrow\;\;r\;=\;\bf{2\;\;cm}}}

______________________________________

~ For Area of the Circle ::

\\\;\;\sf{:\odot\;\;Area\;of\;Circle\;=\;\bf{\pi r^{2}}}

\\\;\;\sf{:\odot\;\;Area\;of\;Circle\;=\;\bf{\dfrac{22}{7}\;\times\;(2)^{2}}}

\\\;\;\sf{:\odot\;\;Area\;of\;Circle\;=\;\bf{\dfrac{22}{7}\;\times\;4}}

\\\;\;\sf{:\odot\;\;Area\;of\;Circle\;=\;\bf{\dfrac{88}{7}}}

\\\;\;\underline{\bf{:\odot\;\;Area\;of\;Circle\;=\;\bf{12.56\;\;cm^{2}}}}

______________________________________

~ For the Area of Shaded Region ::

This is given as,

\\\;\;\sf{:\mapsto\;\;Area\;of\;Shaded\;Region\;=\;\bf{Area\;of\;\Delta\:ABC\;-\;Area\;of\;Circle}}

\\\;\;\sf{:\mapsto\;\;Area\;of\;Shaded\;Region\;=\;\bf{24\;-\;12.56}}

\\\;\;\sf{:\mapsto\;\;Area\;of\;Shaded\;Region\;=\;\bf{11.44\;\;cm^{2}}}

\\\;\underline{\boxed{\tt{\red{Area\;\;of\;\;shaded\;\;region}\;=\;\bf{\blue{11.44\;\;cm^{2}}}}}}

______________________________________

More Formulas to Know :-

\\\;\sf{\pink{\leadsto\;\;Area\;of\;Square\;=\;(Side)^{2}}}

\\\;\sf{\pink{\leadsto\;\;Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}}

\\\;\sf{\pink{\leadsto\;\;Area\;of\;Parallelogram\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}}


Anonymous: Great answer....But you have write area of ||gm wrong.It is base×height not ½×base×height please edit it.
Answered by Anonymous
0

Answer:

Hope this helps you

Step-by-step explanation:

Hence, the area of the shaded region is 11.44 cm2. Sol: ABC is a right angled triangle at right angled at A. BC = 10 cm, AB = 6 cm.


Anonymous: What is this??
Similar questions