Math, asked by Anonymous, 4 months ago

{\Huge{\fcolorbox{pink}{PINK}{Solve this :}}}\ \

Attachments:

Answers

Answered by Anonymous
5

{\Huge{\fcolorbox{pink}{PINK}{Answer :}}}\ \

Attachments:

susmita2891: my new I'd :- susmita2891
susmita2891: pls follow
Answered by Ranveerx107
47

Given:

\bold{(1+\cot \theta - \ coses \theta )(1+\tan \theta + \sec \theta) =2}

To find:

L.H.S=R.H.S

Solution:

\Rightarrow (1+\cot \theta - \ coses \theta )(1+\tan \theta + \sec \theta) =2\\\\\Rightarrow (1+ \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta} )(1+\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos\theta}) =2\\\\\Rightarrow ( \frac{\sin \theta+\cos \theta-1}{\sin \theta})(\frac{\cos \theta+\sin \theta+1}{\cos \theta}) =2\\\\ \Rightarrow  \frac{\sin \theta+\cos \theta-1}{\sin \theta} \times \frac{\cos \theta+\sin \theta+1}{\cos \theta} =2\\\\

\Rightarrow  \frac{(\sin \theta+\cos \theta)^2-(1)^2}{\sin \theta\cos \theta} =2\\\\\therefore  \ (\sin \theta+\cos \theta)^2= \sin^2 \theta +\cos^2 \theta+2\sin \theta\cos\theta \\\\\sin^2 \theta+\cos^2 \theta= 1\\\\\Rightarrow  \frac{\sin^2 \theta +\cos^2 \theta+2\sin \theta\cos\theta-1}{\sin \theta\cos \theta} =2\\\\\Rightarrow  \frac{1+2\sin \theta\cos\theta-1}{\sin \theta\cos \theta} =2\\\\\Rightarrow  \frac{2\sin \theta\cos\theta}{\sin \theta\cos \theta} =2\\\\\Rightarrow  2=2\\\\

\bold{L.H.S=R.H.S}\\

Similar questions