The surface area of a solid metallic sphere is 616 cm2. It is melted and recast into smaller sphere of diameter 3.5 cm. How many such sphere can be obtained ?
Answers
Answer
Given:
The surface area of a solid metallic sphere is 616cm². It is melted and recast into smaller spheres of diameter 3.5cm.
To find:
The spheres are can be obtained.
Explanation:
We have,
The surface area of a solid sphere= 616cm²
We know that formula of the surface area of sphere: 4πr² [sq.units]
→ 4× \frac{22}{7}
7
22
×r² = 616cm²
→ 88/7 × r² = 616
→ r² = \frac{616*7}{88}
88
616∗7
→ r² = \frac{\cancel{616}*7}{\cancel{88}}
88
616
∗7
→ r² = (7× 7)cm
→ r² = 49cm
→ r= √49cm
→ r= 7cm.
Therefore,
We know that volume of the sphere: \frac{4}{3} \pi r^{3}
3
4
πr
3
Volume of the big sphere= (\frac{4}{3} *\frac{22}{7} *7*7*7)cm^{3}(
3
4
∗
7
22
∗7∗7∗7)cm
3
Volume of the big sphere= (\frac{4}{3} *\frac{22}{\cancel{7}} *\cancel{7}*49)cm^{3}(
3
4
∗
7
22
∗
7
∗49)cm
3
Volume of the big sphere= (\frac{88*49}{3} )cm^{3}(
3
88∗49
)cm
3
Volume of the big sphere= \frac{4312}{3} cm^{3}
3
4312
cm
3
Volume of the big sphere= 1437.33cm³
&
Volume of the small sphere:
We have,
Diameter of small sphere,d= 3.5cm
Radius of small sphere,r= 3.5/2cm
→ (\frac{4}{3} *\frac{22}{7} *\frac{3.5}{2} *\frac{3.5}{2} *\frac{3.5}{2} )cm^{3}(
3
4
∗
7
22
∗
2
3.5
∗
2
3.5
∗
2
3.5
)cm
3
→ (\frac{\cancel{88}}{21} *\frac{42.875}{\cancel{8}} )cm^{3}(
21
88
∗
8
42.875
)cm
3
→ (\frac{11}{21} *42.875)cm^{3}(
21
11
∗42.875)cm
3
→ \cancel{(\frac{471.625}{21} )}cm^{3}
(
21
471.625
)
cm
3
→ 22.45cm³.
∴ The number of smaller sphere:
⇒ \frac{Volume\:of\:big\:sphere}{Volume\:of\:small\;sphere}
Volumeofsmallsphere
Volumeofbigsphere
⇒ \cancel{\frac{1437.33cm^{3} }{22.45cm^{3} }}
22.45cm
3
1437.33cm
3
⇒ 64.02 spheres
Thus,
The sphere can be obtained is 64 spheres . [approximately]
..Question..ㅤㅤㅤ
The surface area of a solid metallic sphere is 616 cm². It is melted and recast into smaller sphere of diameter 3.5 cm. How many such sphere can be obtained ?
..Answer..
Given ,
ㅤㅤ➪ Surface area (sphere) = 616 cm²
ㅤㅤ➪ Diameter (small sphere) = 3.5 cm
☯︎ We Know That ,
°•° Surface area (sphere) = 4 π r²
•°• According to the Question
ㅤ➪ Surface area (sphere) = 616 cm²
ㅤ➪ 4 π r²ㅤ ㅤㅤ = 616 cm²
ㅤ➪ 4 × 22/7 × r² = 616
ㅤ➪ 22/7 × r²ㅤㅤ= 616 / 4
ㅤ➪ 22/7 × r²ㅤㅤ= 154
ㅤ➪ 22 × r²ㅤ ㅤ = 154 × 7
ㅤ➪ r²ㅤㅤㅤㅤㅤ = 1078
ㅤ➪ rㅤㅤㅤㅤㅤ = √ 1078
ㅤ➪ rㅤㅤㅤㅤㅤ = 32.8 ( approx )
°•° Radius of Sphere = 32.8 cm
•°• Diameter " ㅤ "ㅤ = 2 × 32.8
ㅤ ㅤ ㅤㅤㅤㅤㅤㅤㅤ = 65.6 cm
Now ,
☯︎ Diameter (small sphere) = 3.5 cm
•°• Surface area (small sphere) »
ㅤㅤㅤ➪ 4 π r²
ㅤㅤㅤ➪ 4 × 22/7 × (3.5)²
ㅤㅤㅤ➪ 4 × 22/7 × 3.5 × 3.5
ㅤㅤㅤ➪ 4 × 22 × 3.5 × 0.5
ㅤㅤㅤ➪ 4 × 22 × 1.75
ㅤㅤㅤ➪ 88 × 1.75
ㅤㅤㅤ➪ 154
•°• Surface area(small sphere)= 154 cm²
So , No. of small sphere obtained =
ㅤ➪ Area(sphere) ÷ Area(small sphere)
ㅤㅤ➪ 616 ÷ 154
ㅤㅤ➪ 4
߷ Total No. of small sphere = 4
_____________________
Give a look here ,
- Surface area ( sphere )
ㅤㅤㅤ➪ 4 π r²
- Volume of sphere
ㅤㅤㅤ➪ 4/3 π r³
- C.S.A ( cylinder )
ㅤㅤㅤ➪ 2 π r h
- Total Surface area ( cylinder )
ㅤㅤㅤ➪ 2 π r ( r + h )
- Surface area ( cuboid )
ㅤㅤㅤ➪ 2 ( lb + bh + hl )
- Surface area ( cube )
ㅤㅤㅤ➪ 6 s²