13- If \: a+\frac{1}{a}=\frac{17}{4}, \: Then\:find \: the \: value \: of \: (a - \frac{1}{a}) \: and \: ( {a}^{2} - \frac{1}{ {a}^{2} })
14- Factorise:
(i) 81(x+1)² + 90(x+1)(y+2) + 25(y+2)²
(ii) x² - 1 - 2y - y²
Pliz solve this guys! :(
Answers
Step-by-step explanation:
Factories form of the expression is 81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+5y+19)(9x+5y+19)
Step-by-step explanation:
Given : Expression 81(x+1)^2+90(x+1)(y+2)+25(y+2)^281(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
To find : Factories the expression?
Solution :
The given expression 81(x+1)^2+90(x+1)(y+2)+25(y+2)^281(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
is in the form of a^2+2ab+b^2a
2
+2ab+b
2
in which
a=9(x+1)a=9(x+1)
b=5(y+2)b=5(y+2)
We know, a^2+2ab+b^2=(a+b)^2a
2
+2ab+b
2
=(a+b)
2
Substitute a and b,
(9(x+1))^2+2(9(x+1))(5(y+2))+(5(y+2))^2=((9(x+1))+(5(y+2)))^2(9(x+1))
2
+2(9(x+1))(5(y+2))+(5(y+2))
2
=((9(x+1))+(5(y+2)))
2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+9+5y+10)^281(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+9+5y+10)
2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)^281(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+5y+19)
2
81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+5y+19)(9x+5y+19)
Therefore, factories form of the expression is 81(x+1)^2+90(x+1)(y+2)+25(y+2)^2=(9x+5y+19)(9x+5y+19)81(x+1)
2
+90(x+1)(y+2)+25(y+2)
2
=(9x+5y+19)(9x+5y+19)
Answer:
Step-by-step explanation: