Math, asked by mddilshad11ab, 9 months ago

\huge\green{Solution\:this\: Question}
\huge\purple{Solve\:this\: Question\:the\: users\:who\: know}

Attachments:

Answers

Answered by Rohit18Bhadauria
75

Given:

\longrightarrow\mathrm{x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}

\longrightarrow\mathrm{y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

To Find:

Value of  \sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

Solution:

We know that,

\longrightarrow\bf{(a+b)^{2}=a^{2}+2ab+b^{2}}

\longrightarrow\bf{(a-b)^{2}=a^{2}-2ab+b^{2}}

\longrightarrow\bf{(a+b)(a-b)=a^{2}-b^{2}}

Now,

\mathrm{x+y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x+y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}+(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x+y=\dfrac{5+3-2\sqrt{5}\sqrt{3}+5+3+2\sqrt{5}\sqrt{3}}{5-3}}

\mathrm{x+y=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}}

\mathrm{x+y=\dfrac{16}{2}}

\mathrm{x+y=8}

Now again,

\mathrm{x-y=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{x-y=\dfrac{(\sqrt{5}-\sqrt{3})^{2}-(\sqrt{5}+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-(5+3+2\sqrt{5}\sqrt{3})}{5-3}}

\mathrm{x-y=\dfrac{5+3-2\sqrt{5}\sqrt{3}-5-3-2\sqrt{5}\sqrt{3}}{2}}

\mathrm{x-y=\dfrac{8-2\sqrt{15}-8-2\sqrt{15}}{2}}

\mathrm{x-y=\dfrac{-4\sqrt{15}}{2}}

\mathrm{x-y=-2\sqrt{15}}

Also,

\mathrm{xy=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}}

\mathrm{xy=1}

So,

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}}

On adding and subtracting xy in numerator and denominator, we get

\rightarrow\sf{\dfrac{x^{2}+xy+y^{2}+xy-xy}{x^{2}-xy+y^{2}+xy-xy}}

\rightarrow\sf{\dfrac{x^{2}+2xy+y^{2}-xy}{x^{2}-2xy+y^{2}+xy}}

\rightarrow\sf{\dfrac{(x+y)^{2}-xy}{(x-y)^{2}+xy}}

On feeding values in above equation, we get

\rightarrow\sf{\dfrac{(8)^{2}-1}{(-2\sqrt{15})^{2}+1}}

\rightarrow\sf{\dfrac{64-1}{60+1}}

\rightarrow\sf{\dfrac{63}{61}}

Hence, the required value is  \bf{\dfrac{63}{61}}.

Answered by Anonymous
82

Given :

 \sf x =  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} } and  \sf y =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }

To find :

The value of

  \sf\dfrac{x {}^{2} + xy + y {}^{2}  }{x {}^{2}  - xy + y {}^{2} }

Formula's used:

 \sf1)(x + y)(x - y) = x {}^{2}  - y {}^{2}

2) \sf(x + y) {}^{2}  = x {}^{2}  + y {}^{2}  + 2xy

3) \sf(x -y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

Solution :

 \sf x =  \dfrac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

Now rationalise the denominator

 \sf x =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }

 \implies \sf x =  \frac{( \sqrt{5}  -  \sqrt{3} ) {}^{2} }{ (\sqrt{5}  +  \sqrt{3} )( \sqrt{5}  -  \sqrt{3} ) }

We know that (a+b)(a-b)=a²-b²

 \implies \sf x =  \frac{( \sqrt{5} -  \sqrt{3}  ) {}^{2} }{( \sqrt{5}) {}^{2}  - ( \sqrt{3} ) {}^{2} }

we know that (a-b)²= a ² +b²-2ab

 \implies \sf x =  \frac{5 + 3 - 2 \sqrt{3}  \times  \sqrt{5} }{2}

 \implies \sf x =  \frac{8 - 2 \sqrt{15} }{2}

 \implies \sf x = 4 -  \sqrt{15} ...(1)

 \sf y =   \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }

Rationalise the denominator

 \implies \sf y =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }

 \sf \implies y =  \frac{( \sqrt{5} +  \sqrt{3}) {}^{2} }{2}

 \implies \sf y =  \frac{5 + 3 + 2 \sqrt{15} }{2}

 \implies \sf y =  \frac{8 + 2 \sqrt{15} }{2}

 \implies \sf y = 4 +  \sqrt{15} ...(2)

We have to find the value of

 \sf \dfrac{x {}^{2} + xy + y {}^{2}  }{x {}^{2}  - xy + y {}^{2} }

First solve Numerator

 \sf x {}^{2}  + xy + y {}^{2}

Put the values of x and y from equation (1) and (2)

 = \sf  (4 -  \sqrt{15}) {}^{2}   +  (4 -  \sqrt{15} )(4 +  \sqrt{15} )  + (4 +  \sqrt{15} ) {}^{2}

 \sf = (16 + 15 - 2 \times 4 \times  \sqrt{15} )  + (4 {}^{2}  -  (\sqrt{15}) {}^{2}  ) + (16 + 15 + 2 \times 4 \times  \sqrt{15} )

 = 31 -  \cancel{8 \sqrt{15} }  - 1 + 31 +  \cancel{8 \sqrt{15} }

 \sf = 62  +  1 = 63

Now solve denominator

 \sf x {}^{2}  - xy + y {}^{2}

Put the values of x and y from equation (1) and (2)

 \sf =  (4 -  \sqrt{15}) {}^{2}  - (4 {}^{2}  - ( \sqrt{15}) {}^{2} ) + (4 +  \sqrt{3}) {}^{2}

  \sf = 16 + 15 - 8 \sqrt{15}  - (16 - 15) + 16 + 15 + 8 \sqrt{15}

 \sf = 31 -  \cancel{8 \sqrt{15} } - 1 + 31 +  \cancel{8 \sqrt{15}}

 \sf = 62 - 1 = 61

Therefore,

 \sf \dfrac{x {}^{2}  + xy + y {}^{2} }{x {}^{2}  - xy + y {}^{2} }  =  \dfrac{63}{61}

It is the required solution!

Similar questions