Math, asked by Anonymous, 5 months ago

\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}

Answers

Answered by Anonymous
20

Question :

  • Integrate the following function

  • \sf\:\int\:\dfrac{\sqrt{\tan(x)}}{\sin(x)\:\cos(x)}dx

Solution :

  • \sf\:\int\:\dfrac{\sqrt{\tan(x)}}{\sin(x)\:\cos(x)}dx

  • \sf\:\implies\:\int\:\dfrac{\sqrt{\tan(x)}}{\frac({sin(x)\:\cos(x)}{\cos^2x})\:\times\:\cos^2x}dx

  • \sf\:\implies\:\int\:\dfrac{\sqrt{\tan(x)}}{\tan(x)}\:\times\:\sec^2(x)dx

  • \sf\:\implies\:\int\:\dfrac{1}{\sqrt{\tan(x)}}\:\times\:\sec^2(x)dx

If we substitute \sf\:\sqrt{\tan(x)} as t

Then we would get sec²xdx = dt

  • \sf\:\implies\:\int\:\dfrac{1}{t^{\frac{1}{2}}}\:\times\:dt

  • \sf\:\implies\:\int\:t^{\frac{-1}{2}}\:\times\:dt

  • \sf\:\implies\:\dfrac{t^{\frac{-1}{2}\:+\:1}}{\frac{-1}{2}\:+\:1}\:+\:c

  • \sf\:\implies\:\dfrac{t^{\frac{-1}{2}\:+\:1}}{\frac{1}{2}}\:+\:c

  • \sf\:\implies\:2t^{\frac{1}{2}}\:+\:c

  • \sf\:\implies\:2\sqrt{\tan(x)}\:+\:c

Trigonometric Full Table :

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Trigonometric Identities :

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}


amansharma264: nyccc
Glorious31: Amazing
Answered by OoINTROVERToO
0

SOLUTION

 \tt\:\int\:\dfrac{\sqrt{\tan(x)}}{\sin(x)\:\cos(x)}dx

 \tt\:⤇\:\int\:\dfrac{\sqrt{\tan(x)}}{\frac({sin(x)\:\cos(x)}{\cos^2x})\:\times\:\cos^2x}dx

\tt\:⤇\:\int\:\dfrac{\sqrt{\tan(x)}}{\tan(x)}\:\times\:\sec^2(x)dx

\tt\:⤇\:\int\:\dfrac{1}{\sqrt{\tan(x)}}\:\times\:\sec^2(x)dx

Substitute  \tt\:\sqrt{\tan(x)}

  • sec²xdx = dt

 \tt\:⤇\:\int\:\dfrac{1}{t^{\frac{1}{2}}}\:\times\:dt

\tt\:⤇\:\int\:t^{\frac{-1}{2}}\:\times\:dt

 \tt\:⤇\:\dfrac{t^{\frac{-1}{2}\:+\:1}}{\frac{-1}{2}\:+\:1}\:+\:c

 \tt\:⤇\:\dfrac{t^{\frac{-1}{2}\:+\:1}}{\frac{1}{2}}\:+\:c

  \tt\:⤇\:2t^{\frac{1}{2}}\:+\:c

  \tt\:⤇\:2\sqrt{\tan(x)} + c

Similar questions