Science, asked by arsh123465, 5 months ago

\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️
\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️
Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️
Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️
\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️
Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️
Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️
Let \sf p \geq 5 be a prime number.... Prove that there exists an integer \sf a with \sf 1 \leq a \leq p - 2 such that neither \sf {a}^{(p - 1)} - 1 nor [tex
\huge\star\underline\mathtt\green{Question:-}(◍•ᴗ•◍)❤ \tt\pink{✰\:Define} \sf 1. \:Acid \sf 2.... \:Base \sf 3. \:Salt No Spam‼️ ​

Answers

Answered by XxAarzooxX
20

Explanation:

\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️

\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️\huge{\green{\underline{\underline{\tt{Solution:}}}}}

Given,

☞ x = -1

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}

→\;{\sf{P(-1) = -5-4(+1)+3}}

→\;{\sf{P(-1) = -5-4+3}}

→\;{\sf{P(-1) = -9+3}}

➝\;\red{\bf{P(-1) = -6}}

Hope It Helps You ✌️

\huge\underbrace{\green{\tt{\diamond\; Solution:}}}

Let

Total Pocket Money be 'x'

Now, Savings = 30% of x

→\;\Large{\frac{30}{100}×x}

→\;\Large{\frac{30x}{100}}

Given,

Amount Spend = Rs. 280.

→\;\Large{\sf{x - \frac{30x}{100} = 280}}

LCM is '100'

→\;\Large{\sf{\frac{100x-30x}{100} = 280}}

→\;{\sf{70x = 280×100}}

→\;\Large{\sf{x = \cancel{\frac{28000}{70}}}}

→\;\boxed{\sf{x = 400}}

.:. Total Pocket Money is \fbox\red{Rs.400}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\huge\underbrace{\green{\tt{\diamond\; SoluTion:}}}

→\;{\sf{2x² = 128}}

→\;{\sf{x² = \Large\frac{128}{2}}}

→\;{\sf{x = \sqrt{64}}}

→\;{\sf{x = \sqrt{8²}}}

☞\;\Large{\red{\bf{x = 8}}}

\purple{\bf{MrMonarque}}

Hope It Helps You ✌️

Refer The Attachment ⬆️

\red{\sf{MrMonarque}}

Hope It Helps You ✌️

Let \sf p \geq 5 be a prime number.... Prove that there exists an integer \sf a with \sf 1 \leq a \leq p - 2 such that neither \sf {a}^{(p - 1)} - 1 nor [tex

\huge\star\underline\mathtt\green{Question:-}(◍•ᴗ•◍)❤ \tt\pink{✰\:Define} \sf 1. \:Acid \sf 2.... \:Base \sf 3. \:Salt No Spam‼️

Answered by nikitapawar9545
1

Answer:

Let, P(x) = 5x-4x²+3

→\;{\sf{P(-1) = 5(-1)-4(-1)²+3}}→P(−1)=5(−1)−4(−1)²+3

→\;{\sf{P(-1) = -5-4(+1)+3}}→P(−1)=−5−4(+1)+3

→\;{\sf{P(-1) = -5-4+3}}→P(−1)=−5−4+3

→\;{\sf{P(-1) = -9+3}}→P(−1)=−9+3

➝\;\red{\bf{P(-1) = -6}}➝P(−1)=−6

Similar questions