Math, asked by itzmedipayan2, 19 hours ago


 \huge \hookrightarrow \sf  \  \red{\boxed{\blue{question}}} \\

 \int \:  \frac{9x + 2}{ {x}^{2} + x - 6 } dx \\

 \rule{190pt}{2.5pt}

  \small\sf{ \red{expecting \: answers \: from}} \\  \\  \star \sf \green{ moderators} \\  \\   \star  \sf\red{maths \: aryabhata} \\   \\ \star \sf \blue{brainly \: stars} \\  \\  \star \sf \pink{other \: best \: users}

 \huge  \dag \sf \purple{no \: spam}

Answers

Answered by amitkumar44481
28

Solution :

 \tt \implies \:( Let ) \:  \:  I  = \int \dfrac{9x + 2}{ {x}^{2} + x - 6 } dx \\  \\

 \tt \implies \: I =   \int \dfrac{9x + 2}{ (x + 3)(x - 2) } dx \\  \\

Form of the Partial fraction.

 \tt \implies \:   \dfrac{9x + 2}{ (x + 3)(x - 2) }  =  \frac{A}{(x - 2)}   +  \frac{B}{(x + 3)} \\  \\

 \tt \implies \:   \dfrac{9x + 2}{ (x + 3)(x - 2) }  =  \frac{A(x + 3) +  B(x - 2)}{(x  + 3)(x - 2)}    \\   \\

 \tt \implies \:   9x + 2 =  A(x + 3) +  B(x - 2) \\   \\   \tt-  -  -  - (1)

 \rule{150pt}{3pt}

From ( 1 )

At,

  • x = 2.

 \tt \implies \:   20 =   5A. \: \\  \\

 \tt \implies \:   4=   A \: \\  \\

 \rule{80pt}{0.5pt}

At,

  • x = - 3.

 \tt \implies \:    - 25 =    - 5B\\   \\

 \tt \implies \:    5 =   B\\   \\

 \rule{100pt}{2pt}

Now,

 \tt \implies   \:  I  = \int \dfrac{(9x + 2 ) dx}{ {x}^{2} + x - 6 } \\  \\

 \tt \implies  I \: = \: \:  \int  \frac{A \: dx}{(x - 2)}   +   \int\frac{B \: dx}{(x + 3)} \\  \\

 \tt \implies  I \: = \: \:  \int  \frac{4 \: dx}{(x - 2)}   +   \int\frac{5\: dx}{(x + 3)} \\  \\

 \tt \implies  I \: = \: \: 4 \int  \frac{dx}{(x - 2)}  +  5 \int\frac{dx}{(x + 3)} \\  \\

 \tt \implies  I \: = \: \: 4 \:  ln |x - 2|   +  5 \:  ln | x + 3 |  + c. \\  \\

Similar questions