Math, asked by itzsnowqueen91, 2 months ago


 \huge  \: if \: x -  \frac{1}{x}  =  \sqrt{5}
 find \: the \: value \: of -  -
 \huge \ {x}^{4}  +  \frac{1}{ {x}^{4} }
 \\  \\  \\ please \: solve

Answers

Answered by snehitha2
9

Answer:

The required value of x⁴ + 1/x⁴ is 47.

Step-by-step explanation:

Given :

\sf x-\dfrac{1}{x}=\sqrt{5}

To find :

the value of  \sf x^4+\dfrac{1}{x^4}

Solution :

 \sf x-\dfrac{1}{x}=\sqrt{5}

Squaring both sides,

\implies \sf \bigg(x-\dfrac{1}{x}\bigg)^2=\sqrt{5}^2 \\\\ \implies \sf \bigg(x-\dfrac{1}{x}\bigg)^2=5

Applying (a - b)² = a² + b² - 2ab

\implies \sf x^2+\dfrac{1}{x^2}-2(x)\bigg(\dfrac{1}{x}\bigg)=5 \\\\ \implies \sf x^2+\dfrac{1}{x^2}-2=5 \\\\ \implies \sf x^2+\dfrac{1}{x^2}=5+2 \\\\ \implies \sf x^2+\dfrac{1}{x^2}=7

Squaring both sides again,

\implies \sf \bigg(x^2+\dfrac{1}{x^2}\bigg)^2=7^2 \\\\ \implies \sf \bigg(x^2+\dfrac{1}{x^2}\bigg)^2=49

Applying (a + b)² = a² + b² + 2ab

\implies \sf (x^2)^2+\bigg(\dfrac{1}{x^2}\bigg)^2+2(x^2)\bigg(\dfrac{1}{x^2}\bigg)=49 \\\\ \implies \sf x^4+\dfrac{1}{x^4}+2=49 \\\\ \implies \sf x^4+\dfrac{1}{x^4}=49-2 \\\\ \implies \sf x^4+\dfrac{1}{x^4}=47

The value of x⁴ + 1/x⁴ is 47

Similar questions