Math, asked by ItzShizuka50, 1 month ago


\huge{\large{\bf{\red{for \: {\red{\underline{\blue{\mathfrak{Maths  \: Aryabhatta }}}}}}}}}
\huge{\large{\bf{\pink{➢{\red{\underline{\green{\mathfrak{Question:}}}}}}}}}
QUESTION:--

\sf\red{(x³ - y³) ÷ (x - y)}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Note:-
•No spam
•Quality answers
•By step--

Answers

Answered by NITESH761
10

Answer:

we have,

\sf \dfrac{x^3-y^3}{(x-y)}

formula,

\boxed{\rm x^3-y^3 \Rightarrow (x-y) (x^2+xy+y^2)}

\sf \Rightarrow \dfrac{(x-y)(x^2+xy+y^2)}{(x-y)}

\sf \Rightarrow \dfrac{ \cancel{(x-y)}(x^2+xy+y^2)}{\cancel{(x-y)}}

\sf \Rightarrow x^2+xy+y^2

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{ {x}^{3}  -  {y}^{3} }{x - y}

We know,

\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{ \cancel{(x - y)} \: ( {x}^{2}  + xy +  {y}^{2} )}{\cancel{x - y}}

\rm \:  =  \:  {x}^{2} + xy +  {y}^{2}

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{ {x}^{3}  -  {y}^{3} }{x - y} =  {x}^{2} + xy +  {y}^{2} \: }}}

Alternative Method :-

Using Long Division

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + xy +  {y}^{2} \:\:}}}\\ {\underline{\sf{x - y}}}& {\sf{\: {x}^{3} + 0 {x}^{2}y +  {0y}^{2}x -{y}^{3}  \:\:}} \\{\sf{}}& \underline{\sf{\: -{x}^{3} + {yx}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \:\:}} \\ {{\sf{}}}& {\sf{\: \:   {yx}^{2}  + {0xy}^{2}  -   {y}^{3}   \:    \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:      - {yx}^{2} +  {xy}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     \:\:}} \\ {\underline{\sf{}}}& {\sf{\: {xy}^{2}  -   {y}^{3}  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  -  {xy}^{2}  +  {y}^{3}  \:  \:  \:  \:  \:  \: \:}} \\ {\underline{\sf{}}}& {\sf{\:0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{ {x}^{3}  -  {y}^{3} }{x - y} =  {x}^{2} + xy +  {y}^{2} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \: }}

\boxed{ \tt{ \:  {(x  -  y)}^{3} =  {x}^{3}  -  3xy(x - y)  -   {y}^{3} \: }}

\boxed{ \tt{ \:  {(x + y)}^{3} =  {x}^{3} +  3xy(x  +  y) + {y}^{3} \: }}

\boxed{ \tt{ \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) \: }}

\boxed{ \tt{ \:  {x}^{3} + {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2}) \: }}

\boxed{ \tt{ \:  {(x + y)}^{2} -  {(x - y)}^{2}  = 4xy \: }}

\boxed{ \tt{ \:  {(x + y)}^{2} + {(x - y)}^{2}  = 2( {x}^{2} +  {y}^{2}) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions