Math, asked by ItzBangtansBird, 1 month ago


\huge\mathbb\fcolorbox{Purple}{pink}{⭐question⭐}
Without actually calculating the zeroes, form a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial 5x²+2x–35x²+2x–3 ​

Answers

Answered by Anonymous
6

 \large\sf \bf \underline\purple{ your\: \: answer \: !!}

Without actually calculating the zeroes,form a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial 5x2+2x-3 is 3x^2 - 2x - 5.

Attachments:
Answered by itsPapaKaHelicopter
6

Answer:

★\text{Let }  \alpha \text{ and \: }  \beta \text{ \: are roots of}

⇒ {5x}^{2}  + 2x - 3

⇒ \alpha  +  \beta  =  -  \frac{2}{5} \sf \colorbox{god} {and} \:  \alpha  \beta  =  -  \frac{3}{5}

★ Now let new polynomial has roots = A & B

⇒ATQ \: A =  \frac{1}{ \alpha } \:\sf \colorbox{god} {and \: }  B =  \frac{1}{ \beta }

★\sf \colorbox{god} {Now sum of roots}

⇒A + B =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

⇒ \frac{ \beta  +  \alpha }{ \alpha  \beta }  =  -  \frac{ \frac{2}{5} }{ -  \frac{3}{5} }  =  \frac{2}{3}

★\sf \colorbox{god} {And Product of roots}

⇒A \times B =  \frac{1}{ \alpha }  \times  \frac{1}{ \beta }

⇒ \frac{1}{ \alpha  \beta }  =  \frac{1}{ -  \frac{3}{5} }  =  -  \frac{5}{3}

 \textbf{Polynomial Will be}

⇒ {x}^{2}  - (\text{sum \: of \: roots)  } x + \text{product \: of \: roots}  = 0

⇒ {x}^{2}  -  \frac{2x}{3}  +  \left(  -  \frac{5}{3} \right) \] = 0

⇒ {3x}^{2}  - 2x - 5 = 0

Hence,

 =  {3x}^{2}  - 2x - 5 = 0

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ}

Similar questions