Math, asked by Anonymous, 2 months ago

\huge\mathbb{Question}


p and q are two point observed from the top of a building 10√3 m hight. If the angle of depression of the point are complementary and pq = 20m , then the distance of p from the building is?​

Answers

Answered by alanw1656
12

Step-by-step explanation:

cot θ = 1. ⇒ l = 10 m. ∴

The distance of P from the building = 10 + 20 = 30 m.

This discussion on P and Q are two points observed from the top of a building 10√3 m high.

Answered by SparklingBoy
80

-------------------------------

♠ Correct Question :-

P and Q are two point observed from the top of a building 10√3 m height . If the angle of depression of the point are complementry and PQ = 20m , then the distance of P from the buliding is (Given P is farther point)

-------------------------------

♠ Answer :-

  • Distance of point P from building is 30m.

-------------------------------

♠ Solution :-

As the angles are complementary So their sum must be 90° .

\large \bigstar \: \underline{ \pmb{ \mathfrak{ \text{A}ccording \: to \: \text{A}ttached  \: figure }}}

 \Large \pmb{In \: \triangle \: SRQ \: :-} \\

 \sf \tan(90 - x) = \dfrac{10 \sqrt{3} }{y} \\ \\ \bf :\longmapsto cot \: x = \frac{10 \sqrt{3} }{y} \: \:\: - -   - (i)

Now ,

 \Large \pmb{In \: \triangle \: SRP \: :-} \\

 \bf tan \: x = \dfrac{10 \sqrt{3} }{y + 20}  \:  \:  \:  \:  -  -  -  - (ii)

Mulyiplying (i) and (ii) We get,

\sf \tan x. \cot x = \dfrac{10 \sqrt{3}}{y} \times \frac{10 \sqrt{3} }{20 + y} \\ \\ :\longmapsto \sf 1 = \frac{300}{y(y + 20)} \\ \\:\longmapsto \sf1 = \frac{300}{y {}^{2} + 20y} \\ \\ \bf:\longmapsto y {}^{2} + 20y - 300 = 0 \\ \\ :\longmapsto \sf y {}^{2} - 10y + 30y - 300 = 0 \\ \\:\longmapsto \sf y(y - 10) + 30(y - 10) = 0 \\ \\ :\longmapsto\sf (y - 10)(y + 30) = 0 \\ \\ \large \sf \purple{ :\longmapsto \underline {\boxed{{\bf y = 10 \: \: or \: \: y = - 30 } }}}

As y is distance So it can't be Negative

Hence,

\Large\purple{ :\longmapsto \underline {\boxed{{\bf y = 10m} }}} \\  \\

So,

  • Distance of point P from building = 10 + 20

\\  \\ \pink{ \LARGE:\longmapsto \mathfrak{Distance=30m}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Attachments:
Similar questions