Math, asked by Anonymous, 3 months ago

\huge\mathcal{\purple{(✷‿✷) Question࿐}}

Find the roots of each of the following equations, if they exist, by applying the quadratic formula:

4√3x²+5x-2√3=0

Answers

Answered by Anonymous
8

\huge\sf{\purple{ Question࿐}}

Find the roots of each of the following equations, if they exist, by applying the quadratic formula:

4√3x²+5x-2√3=0

\huge\sf{\purple{Answer࿐}}

  • 4√3x²+5x-2√3=0

  • a = 4√3
  • b = 5
  • c = -2√3

  • by using quadratic formula :
  •  \sf{x =  \frac{ - b ± \sqrt{b {}^{2} - 4ac } }{2a} } \\
  •  \sf{x =   \frac{ - (5)± \sqrt{(5) {}^{2}  - 4(4 \sqrt{3})( - 2 \sqrt{3} ) } }{2(4 \sqrt{3} )} } \\
  •  \sf{x =  \frac{ - 5± \sqrt{25 + 96} }{8 \sqrt{3} } } \\
  •  \sf{x =  \frac{ - 5 ± \sqrt{121}  }{8 \sqrt{3} } } \\
  •  \sf{x =   \frac{ - 5±11}{8 \sqrt{3} } } \\
  •  \sf{x =   \frac{ - 5 - 11}{8 \sqrt{3} } , \frac{ - 5 + 11}{8 \sqrt{3} } } \\
  •  \sf{x =  \frac{ - 16}{8 \sqrt{3} }, \frac{6}{8 \sqrt{3} }  } \\
  •  \sf{x =  \frac{ - 2}{ \sqrt{3} } , \frac{3}{4 \sqrt{3} } } \\
  •  \boxed{ \sf{x =   - \frac{2 }{ \sqrt{3} } ,   \frac{3}{4 \sqrt{3} } } }
Similar questions